Abstract
Emergency medicine is a discipline that today is increasingly the focus of attention. In the emergency department, to avoid overcrowding, it is important to assess the Length of the Stay (LOS). The length of stay (LOS) is a useful tool to monitor patients and for evaluating the efficiency and quality of the services offered. This study was conducted with the aim of providing LOS for all patients of Emergency Medicine unit of the University Hospital “San Giovanni di Dio e Ruggi d’Aragona” in Salerno (Italy) and the A.O.R.N. “Antonio Cardarelli” in Naples (Italy). Our aim is to evaluate the procedures about LOS in two different hospitals, also comparing the obtained results The analysis was conducted with Multiple Linear Regression. In particular for the second an R2 equal to 0.880 was obtained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Schneider, S.M., Hamilton, G.C., Moyer, P., Stapczynski, J.S.: Definition of emergency medicine. Acad. Emerg. Med. 5, 348–351 (1998). https://doi.org/10.1111/j.1553-2712.1998.tb02720.x
Richardson, L.D., Hwang, U.: Access to care a review of the emergency medicine literature. Acad. Emerg. Med. 8, 1030–1036 (2001). https://doi.org/10.1111/j.1553-2712.2001.tb01111.x
Dykstra, E.H.: International models for the practice of emergency care. Am. J. Emerg. Med. 15(2), 208–209 (1997)
Garrone, M.: Prehospital ultrasound as the evolution of the Franco-German model of prehospital EMS. Crit. Ultrasound J. 3(3), 141–147 (2011). https://doi.org/10.1007/s13089-011-0077-0
Lindner, G., Woitok, B.K.: Emergency department overcrowding. Wien. Klin. Wochenschr. 133(5–6), 229–233 (2020). https://doi.org/10.1007/s00508-019-01596-7
Epstein, S.K., Tian, L.: Development of an emergency department work score to predict ambulance diversion. Acad. Emerg. Med. 13, 421–426 (2006)
Lin, C.H., Kao, C.Y., Huang, C.Y.: Managing emergency department overcrowding via ambulance diversion: a discrete event simulation model. J. Formos. Med. Assoc. 114(1), 64–71 (2015)
Bouillon-Minois, J.B., Raconnat, J., Clinchamps, M., Schmidt, J., Dutheil, F.: Emergency department and overcrowding during COVID-19 outbreak; a letter to editor. Arch. Acad. Emerg. Med. 9(1) (2021)
Weiss, S.J., et al.: Estimating the degree of emergency department overcrowding in academic medical centers: results of the national ED overcrowding study (NEDOCS). Acad. Emerg. Med. 11(1), 38–50 (2004). https://doi.org/10.1197/j.aem.2003.07.017
McConnell, K.J., Richards, C.F., Daya, M., et al.: Effect of increased ICU capacity on emergency department length of stay and ambulance diversion. Ann. Emerg. Med. 45, 471–478 (2005)
Lagoe, R.J., Hunt, R.C., Nadle, P.A., et al.: Utilization and impact of ambulance diversion at the community level. Prehosp. Emerg. Care 6, 191–198 (2002)
Reeder, T.J., Burleson, D.L., Garrison, H.G.: The overcrowded emergency department: a comparison of staff perceptions (2003)
Erenler, A.K., et al.: Reasons for overcrowding in the emergency department: experiences and suggestions of an education and research hospital. Turk. J. Emerg. Med. 14(2), 59–63 (2014)
Han, Q., Molinaro, C., Picariello, A., Sperli, G., Subrahmanian, V.S., Xiong, Y.: Generating fake documents using probabilistic logic graphs. IEEE Trans. Dependable Secure Comput. (2021). https://doi.org/10.1109/TDSC.2021.3058994
Di Girolamo, R., Esposito, C., Moscato, V., Sperlí, G.: Evolutionary game theoretical on-line event detection over tweet streams. Knowl.-Based Syst. 211, 106563 (2021). https://doi.org/10.1016/j.knosys.2020.106563
La Gatta, V., Moscato, V., Pennone, M., Postiglione, M., and Sperlí, G.: Music Recommendation via Hypergraph Embedding. IEEE Trans. Neural Netw. Learn. Syst. (2022).https://doi.org/10.1109/TNNLS.2022.3146968
Esposito, C., Moscato, V., Sperlí, G.: Trustworthiness assessment of users in social reviewing systems. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 151–165 (2022). https://doi.org/10.1109/TSMC.2020.3049082
Sperlí, G.: A cultural heritage framework using a Deep Learning based Chatbot for supporting tourist journey. Expert Syst. Appl. 183, 115277 (2021). https://doi.org/10.1016/j.eswa.2021.115277
Maietta, S., et al.: A further analysis on Ti6Al4V lattice structures manufactured by selective laser melting. J. Healthc. Eng. 2019 (2019)
Rosa, D., Balato, G., Ciaramella, G., Soscia, E., Improta, G., Triassi, M.: Long-term clinical results and MRI changes after autologous chondrocyte implantation in the knee of young and active middle aged patients. J. Orthop. Traumatol. 17(1), 55–62 (2015). https://doi.org/10.1007/s10195-015-0383-6
Converso, G., Improta, G., Mignano, M., Santillo, L.C.: A simulation approach for agile production logic implementation in a hospital emergency unit. In: Fujita, H., Guizzi, G. (eds.) Intelligent Software Methodologies, Tools and Techniques. SoMeT 2015. Communications in Computer and Information Science, vol. 532. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22689-7_48
Ponsiglione, A.M., Romano, M., Amato, F.: A finite-state machine approach to study patients dropout from medical examinations. In: 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), pp. 289–294 (2021). https://doi.org/10.1109/RTSI50628.2021.9597264
Revetria, R., et al.: Improving healthcare using cognitive computing based software: an application in emergency situation. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) Advanced Research in Applied Artificial Intelligence. IEA/AIE 2012. LNCS, vol. 7345. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31087-4_50
Improta, G., et al.: Analytic hierarchy process (AHP) in dynamic configuration as a tool for health technology assessment (HTA): the case of biosensing optoelectronics in oncology. Int. J. Inf. Technol. Decis. Mak. 18(05), 1533–1550 (2019)
Improta, G., et al.: An innovative contribution to health technology assessment. In: Ding, W., Jiang, H., Ali, M., Li, M. (eds.) Modern Advances in Intelligent Systems and Tools. Studies in Computational Intelligence, vol. 431, pp. 127–131. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30732-4_16
Cesarelli, G., et al.: An innovative business model for a multi-echelon supply chain inventory management pattern. J. Phys. Conf. Ser. 1828(1). IOP Publishing (2021)
Improta, G., et al.: Fuzzy logic–based clinical decision support system for the evaluation of renal function in post‐Transplant Patients. J. Eval. Clin. Pract. 26(4), 1224–1234 (2020)
Cesarelli, M., et al.: An application of symbolic dynamics for FHRV assessment. MIE (2012)
Ponsiglione, A.M., Cosentino, C., Cesarelli, G., Amato, F., Romano, M.: A comprehensive review of techniques for processing and analyzing fetal heart rate signals. Sensors 21, 6136 (2021). https://doi.org/10.3390/s21186136
Ponsiglione, A.M., Amato, F., Romano, M.: Multiparametric investigation of dynamics in fetal heart rate signals. Bioengineering 9, 8 (2022). https://doi.org/10.3390/bioengineering9010008
Latessa, I., et al.: Implementing fast track surgery in hip and knee arthroplasty using the lean Six Sigma methodology. TQM J. 33(7), 131–147 (2020)
Pascarella, R., et al.: Surgical results and factors influencing outcome in patients with posterior wall acetabular fracture. Injury 48(8), 1819–1824 (2017)
Lamberti, A., Balato, G., Summa, P.P., Rajgopal, A., Vasdev, A., Baldini, A.: Surgical options for chronic patellar tendon rupture in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 26(5), 1429–1435 (2016). https://doi.org/10.1007/s00167-016-4370-0
Baldini, A., Balato, G., Franceschini, V.: The role of offset stems in revision knee arthroplasty. Curr. Rev. Musculoskelet. Med. 8(4), 383–389 (2015). https://doi.org/10.1007/s12178-015-9294-7
Balato, G., et al.: Laboratory-based versus qualitative assessment of α-defensin in periprosthetic hip and knee infections: a systematic review and meta-analysis. Arch. Orthop. Trauma Surg. 140(3), 293–301 (2019). https://doi.org/10.1007/s00402-019-03232-5
Ascione, T., Balato, G., Mariconda, M., Rotondo, R., Baldini, A., Pagliano, P.: Continuous antibiotic therapy can reduce recurrence of prosthetic joint infection in patients undergoing 2-stage exchange. J. Arthroplasty 34(4), 704–709 (2019)
Romano, V., et al.: Cell toxicity study of antiseptic solutions containing povidone-iodine and hydrogen peroxide. Diagnostics (Basel) 12(8), 2021 (2022)
Balato, G., et al.: Bacterial biofilm formation is variably inhibited by different formulations of antibiotic-loaded bone cement in vitro. Knee Surg. Sports Traumatol. Arthrosc. 27(6), 1943–1952 (2018). https://doi.org/10.1007/s00167-018-5230-x
Ascione, T., et al.: Clinical and microbiological outcomes in haematogenous spondylodiscitis treated conservatively. Eur. Spine J. 26(4), 489–495 (2017). https://doi.org/10.1007/s00586-017-5036-4
Balato, G., et al.: Prevention and treatment of peri-prosthetic joint infection using surgical wound irrigation. J. Biol. Regul. Homeost. Agents 34(5 Suppl. 1), 17–23 (2020). IORS Special Issue on Orthopedics
Scala, A., et al.: Regression models to study the total LOS related to valvuloplasty. Int. J Environ. Res. Public Health 19(5), 3117 (2022)
Combes, C., Kadri, F., Chaabane, S.: Predicting hospital length of stay using regression models: application to emergency department (2014)
Al Taleb, A.R., Hoque, M., Hasanat, A., Khan, M.B.: Application of data mining techniques to predict length of stay of stroke patients. In: 2017 International Conference on Informatics, Health Technology (ICIHT) 2017 International Conference on Informatics, Health Technology (ICIHT), pp. 1–5 (2017)
Bender, G.J., et al.: Neonatal intensive care unit: predictive models for length of stay. J. Perinatol. Off. J. Calif. Perinat. Assoc. 33, 147–153 (2013)
Bacchi, S., Tan, Y., Oakden-Rayner, L., Jannes, J., Kleinig, T., Koblar, S.: Machine Learning in the Prediction of Medical Inpatient Length of Stay Intern. Med. J. n/a
Trunfio, T.A., Borrelli, A., Improta, G.: Is it possible to predict the length of stay of patients undergoing hip-replacement surgery? Int. J. Environ. Res. Public Health 19(10), 6219 (2022)
Ponsiglione, A.M., Profeta, M., Giglio, C., Lombardi, A., Borrelli, A., Scala, A.: Modeling the variation in length of stay for appendectomy and cholecystectomy interventions in the emergency general surgery (2021)
Profeta, M., et al.: Impact of diagnostic techniques on the length of stay in emergency medicine. In: 2021 International Symposium on Biomedical Engineering and Computational Biology, pp. 1–4, August 2021
Smeraglia, F., Basso, M.A., Famiglietti, G., Cozzolino, A., Balato, G., Bernasconi, A.: Pyrocardan® interpositional arthroplasty for trapeziometacarpal osteoarthritis: a minimum four year follow-up. Int. Orthop. 46(8), 1803–1810 (2022)
Mariconda, M., Soscia, E., Sirignano, C., Smeraglia, F., Soldati, A., Balato, G.: Long-term clinical results and MRI changes after tendon ball arthroplasty for advanced Kienbock’s disease. J. Hand Surg. Eur. 38(5), 508–514 (2013)
Smeraglia, F., Del Buono, A., Maffulli, N.: Endoscopic cubital tunnel release: a systematic review. Br. Med. Bull. 116, 155–163 (2015)
Smeraglia, F., Basso, M.A., Famiglietti, G., Eckersley, R., Bernasconi, A., Balato, G.: Partial wrist denervation versus total wrist denervation: a systematic review of the literature. Hand Surg. Rehabil. 39(6), 487–491 (2020)
Guarino, F., Improta, G., Triassi, M., Castiglione, S., Cicatelli, A.: Air quality biomonitoring through Olea Europaea l.: the study case of land of pyres. Chemosphere 282, 131052 (2021). https://doi.org/10.1016/j.chemosphere.2021.131052
Guarino, F., Improta, G., Triassi, M., Cicatelli, A., Castiglione, S.: Effects of zinc pollution and compost amendment on the root microbiome of a metal tolerant poplar clone. Front. Microbiol. 11, 1677 (2020). https://doi.org/10.3389/fmicb.2020.01677
Guarino, F., et al.: Genetic characterization, micropropagation, and potential use for arsenic phytoremediation of Dittrichia viscosa (L.) Greuter. Ecotoxicol. Environ. Saf. 148, 675–683 (2018). https://doi.org/10.1016/j.ecoenv.2017.11.010
Guarino, F., Cicatelli, A., Brundu, G., Improta, G., Triassi, M., Castiglione, S.: The use of MSAP reveals epigenetic diversity of the invasive clonal populations of Arundo donax L PLoS One 14 (2019). https://doi.org/10.1371/journal.pone.0215096
De Agostini, A., et al.: Heavy metal tolerance of orchid populations growing on abandoned mine tailings: a case study in Sardinia Island (Italy). Ecotoxicol. Environ. Saf. 189, 110018 (2020). https://doi.org/10.1016/j.ecoenv.2019.110018
Moccia, E., et al.: Use of Zea mays L. in phytoremediation of trichloroethylene. Environ. Sci. Pollut. Res. 24, 11053–11060 (2017). https://doi.org/10.1007/s11356-016-7570-8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Valente, A.S. et al. (2023). Multiple Linear Regression to Analyze the Effect of Emergency Diagnostic Procedures on the Hospitalization. In: Wen, S., Yang, C. (eds) Biomedical and Computational Biology. BECB 2022. Lecture Notes in Computer Science(), vol 13637. Springer, Cham. https://doi.org/10.1007/978-3-031-25191-7_54
Download citation
DOI: https://doi.org/10.1007/978-3-031-25191-7_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25190-0
Online ISBN: 978-3-031-25191-7
eBook Packages: Computer ScienceComputer Science (R0)