[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multiple Linear Regression to Analyze the Effect of Emergency Diagnostic Procedures on the Hospitalization

  • Conference paper
  • First Online:
Biomedical and Computational Biology (BECB 2022)

Abstract

Emergency medicine is a discipline that today is increasingly the focus of attention. In the emergency department, to avoid overcrowding, it is important to assess the Length of the Stay (LOS). The length of stay (LOS) is a useful tool to monitor patients and for evaluating the efficiency and quality of the services offered. This study was conducted with the aim of providing LOS for all patients of Emergency Medicine unit of the University Hospital “San Giovanni di Dio e Ruggi d’Aragona” in Salerno (Italy) and the A.O.R.N. “Antonio Cardarelli” in Naples (Italy). Our aim is to evaluate the procedures about LOS in two different hospitals, also comparing the obtained results The analysis was conducted with Multiple Linear Regression. In particular for the second an R2 equal to 0.880 was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schneider, S.M., Hamilton, G.C., Moyer, P., Stapczynski, J.S.: Definition of emergency medicine. Acad. Emerg. Med. 5, 348–351 (1998). https://doi.org/10.1111/j.1553-2712.1998.tb02720.x

    Article  CAS  PubMed  Google Scholar 

  2. Richardson, L.D., Hwang, U.: Access to care a review of the emergency medicine literature. Acad. Emerg. Med. 8, 1030–1036 (2001). https://doi.org/10.1111/j.1553-2712.2001.tb01111.x

    Article  CAS  PubMed  Google Scholar 

  3. Dykstra, E.H.: International models for the practice of emergency care. Am. J. Emerg. Med. 15(2), 208–209 (1997)

    Article  CAS  PubMed  Google Scholar 

  4. Garrone, M.: Prehospital ultrasound as the evolution of the Franco-German model of prehospital EMS. Crit. Ultrasound J. 3(3), 141–147 (2011). https://doi.org/10.1007/s13089-011-0077-0

    Article  Google Scholar 

  5. Lindner, G., Woitok, B.K.: Emergency department overcrowding. Wien. Klin. Wochenschr. 133(5–6), 229–233 (2020). https://doi.org/10.1007/s00508-019-01596-7

    Article  PubMed  Google Scholar 

  6. Epstein, S.K., Tian, L.: Development of an emergency department work score to predict ambulance diversion. Acad. Emerg. Med. 13, 421–426 (2006)

    Google Scholar 

  7. Lin, C.H., Kao, C.Y., Huang, C.Y.: Managing emergency department overcrowding via ambulance diversion: a discrete event simulation model. J. Formos. Med. Assoc. 114(1), 64–71 (2015)

    Article  PubMed  Google Scholar 

  8. Bouillon-Minois, J.B., Raconnat, J., Clinchamps, M., Schmidt, J., Dutheil, F.: Emergency department and overcrowding during COVID-19 outbreak; a letter to editor. Arch. Acad. Emerg. Med. 9(1) (2021)

    Google Scholar 

  9. Weiss, S.J., et al.: Estimating the degree of emergency department overcrowding in academic medical centers: results of the national ED overcrowding study (NEDOCS). Acad. Emerg. Med. 11(1), 38–50 (2004). https://doi.org/10.1197/j.aem.2003.07.017

  10. McConnell, K.J., Richards, C.F., Daya, M., et al.: Effect of increased ICU capacity on emergency department length of stay and ambulance diversion. Ann. Emerg. Med. 45, 471–478 (2005)

    Article  PubMed  Google Scholar 

  11. Lagoe, R.J., Hunt, R.C., Nadle, P.A., et al.: Utilization and impact of ambulance diversion at the community level. Prehosp. Emerg. Care 6, 191–198 (2002)

    Google Scholar 

  12. Reeder, T.J., Burleson, D.L., Garrison, H.G.: The overcrowded emergency department: a comparison of staff perceptions (2003)

    Google Scholar 

  13. Erenler, A.K., et al.: Reasons for overcrowding in the emergency department: experiences and suggestions of an education and research hospital. Turk. J. Emerg. Med. 14(2), 59–63 (2014)

    Article  PubMed  Google Scholar 

  14. Han, Q., Molinaro, C., Picariello, A., Sperli, G., Subrahmanian, V.S., Xiong, Y.: Generating fake documents using probabilistic logic graphs. IEEE Trans. Dependable Secure Comput. (2021). https://doi.org/10.1109/TDSC.2021.3058994

    Article  Google Scholar 

  15. Di Girolamo, R., Esposito, C., Moscato, V., Sperlí, G.: Evolutionary game theoretical on-line event detection over tweet streams. Knowl.-Based Syst. 211, 106563 (2021). https://doi.org/10.1016/j.knosys.2020.106563

    Article  Google Scholar 

  16. La Gatta, V., Moscato, V., Pennone, M., Postiglione, M., and Sperlí, G.: Music Recommendation via Hypergraph Embedding. IEEE Trans. Neural Netw. Learn. Syst. (2022).https://doi.org/10.1109/TNNLS.2022.3146968

  17. Esposito, C., Moscato, V., Sperlí, G.: Trustworthiness assessment of users in social reviewing systems. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 151–165 (2022). https://doi.org/10.1109/TSMC.2020.3049082

    Article  Google Scholar 

  18. Sperlí, G.: A cultural heritage framework using a Deep Learning based Chatbot for supporting tourist journey. Expert Syst. Appl. 183, 115277 (2021). https://doi.org/10.1016/j.eswa.2021.115277

    Article  Google Scholar 

  19. Maietta, S., et al.: A further analysis on Ti6Al4V lattice structures manufactured by selective laser melting. J. Healthc. Eng. 2019 (2019)

    Google Scholar 

  20. Rosa, D., Balato, G., Ciaramella, G., Soscia, E., Improta, G., Triassi, M.: Long-term clinical results and MRI changes after autologous chondrocyte implantation in the knee of young and active middle aged patients. J. Orthop. Traumatol. 17(1), 55–62 (2015). https://doi.org/10.1007/s10195-015-0383-6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Converso, G., Improta, G., Mignano, M., Santillo, L.C.: A simulation approach for agile production logic implementation in a hospital emergency unit. In: Fujita, H., Guizzi, G. (eds.) Intelligent Software Methodologies, Tools and Techniques. SoMeT 2015. Communications in Computer and Information Science, vol. 532. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22689-7_48

  22. Ponsiglione, A.M., Romano, M., Amato, F.: A finite-state machine approach to study patients dropout from medical examinations. In: 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), pp. 289–294 (2021). https://doi.org/10.1109/RTSI50628.2021.9597264

  23. Revetria, R., et al.: Improving healthcare using cognitive computing based software: an application in emergency situation. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) Advanced Research in Applied Artificial Intelligence. IEA/AIE 2012. LNCS, vol. 7345. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31087-4_50

  24. Improta, G., et al.: Analytic hierarchy process (AHP) in dynamic configuration as a tool for health technology assessment (HTA): the case of biosensing optoelectronics in oncology. Int. J. Inf. Technol. Decis. Mak. 18(05), 1533–1550 (2019)

    Google Scholar 

  25. Improta, G., et al.: An innovative contribution to health technology assessment. In: Ding, W., Jiang, H., Ali, M., Li, M. (eds.) Modern Advances in Intelligent Systems and Tools. Studies in Computational Intelligence, vol. 431, pp. 127–131. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30732-4_16

  26. Cesarelli, G., et al.: An innovative business model for a multi-echelon supply chain inventory management pattern. J. Phys. Conf. Ser. 1828(1). IOP Publishing (2021)

    Google Scholar 

  27. Improta, G., et al.: Fuzzy logic–based clinical decision support system for the evaluation of renal function in post‐Transplant Patients. J. Eval. Clin. Pract. 26(4), 1224–1234 (2020)

    Google Scholar 

  28. Cesarelli, M., et al.: An application of symbolic dynamics for FHRV assessment. MIE (2012)

    Google Scholar 

  29. Ponsiglione, A.M., Cosentino, C., Cesarelli, G., Amato, F., Romano, M.: A comprehensive review of techniques for processing and analyzing fetal heart rate signals. Sensors 21, 6136 (2021). https://doi.org/10.3390/s21186136

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ponsiglione, A.M., Amato, F., Romano, M.: Multiparametric investigation of dynamics in fetal heart rate signals. Bioengineering 9, 8 (2022). https://doi.org/10.3390/bioengineering9010008

    Article  Google Scholar 

  31. Latessa, I., et al.: Implementing fast track surgery in hip and knee arthroplasty using the lean Six Sigma methodology. TQM J. 33(7), 131–147 (2020)

    Article  Google Scholar 

  32. Pascarella, R., et al.: Surgical results and factors influencing outcome in patients with posterior wall acetabular fracture. Injury 48(8), 1819–1824 (2017)

    Article  PubMed  Google Scholar 

  33. Lamberti, A., Balato, G., Summa, P.P., Rajgopal, A., Vasdev, A., Baldini, A.: Surgical options for chronic patellar tendon rupture in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 26(5), 1429–1435 (2016). https://doi.org/10.1007/s00167-016-4370-0

    Article  PubMed  Google Scholar 

  34. Baldini, A., Balato, G., Franceschini, V.: The role of offset stems in revision knee arthroplasty. Curr. Rev. Musculoskelet. Med. 8(4), 383–389 (2015). https://doi.org/10.1007/s12178-015-9294-7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Balato, G., et al.: Laboratory-based versus qualitative assessment of α-defensin in periprosthetic hip and knee infections: a systematic review and meta-analysis. Arch. Orthop. Trauma Surg. 140(3), 293–301 (2019). https://doi.org/10.1007/s00402-019-03232-5

    Article  PubMed  Google Scholar 

  36. Ascione, T., Balato, G., Mariconda, M., Rotondo, R., Baldini, A., Pagliano, P.: Continuous antibiotic therapy can reduce recurrence of prosthetic joint infection in patients undergoing 2-stage exchange. J. Arthroplasty 34(4), 704–709 (2019)

    Article  PubMed  Google Scholar 

  37. Romano, V., et al.: Cell toxicity study of antiseptic solutions containing povidone-iodine and hydrogen peroxide. Diagnostics (Basel) 12(8), 2021 (2022)

    Article  CAS  PubMed  Google Scholar 

  38. Balato, G., et al.: Bacterial biofilm formation is variably inhibited by different formulations of antibiotic-loaded bone cement in vitro. Knee Surg. Sports Traumatol. Arthrosc. 27(6), 1943–1952 (2018). https://doi.org/10.1007/s00167-018-5230-x

    Article  PubMed  Google Scholar 

  39. Ascione, T., et al.: Clinical and microbiological outcomes in haematogenous spondylodiscitis treated conservatively. Eur. Spine J. 26(4), 489–495 (2017). https://doi.org/10.1007/s00586-017-5036-4

    Article  PubMed  Google Scholar 

  40. Balato, G., et al.: Prevention and treatment of peri-prosthetic joint infection using surgical wound irrigation. J. Biol. Regul. Homeost. Agents 34(5 Suppl. 1), 17–23 (2020). IORS Special Issue on Orthopedics

    Google Scholar 

  41. Scala, A., et al.: Regression models to study the total LOS related to valvuloplasty. Int. J Environ. Res. Public Health 19(5), 3117 (2022)

    Google Scholar 

  42. Combes, C., Kadri, F., Chaabane, S.: Predicting hospital length of stay using regression models: application to emergency department (2014)

    Google Scholar 

  43. Al Taleb, A.R., Hoque, M., Hasanat, A., Khan, M.B.: Application of data mining techniques to predict length of stay of stroke patients. In: 2017 International Conference on Informatics, Health Technology (ICIHT) 2017 International Conference on Informatics, Health Technology (ICIHT), pp. 1–5 (2017)

    Google Scholar 

  44. Bender, G.J., et al.: Neonatal intensive care unit: predictive models for length of stay. J. Perinatol. Off. J. Calif. Perinat. Assoc. 33, 147–153 (2013)

    CAS  Google Scholar 

  45. Bacchi, S., Tan, Y., Oakden-Rayner, L., Jannes, J., Kleinig, T., Koblar, S.: Machine Learning in the Prediction of Medical Inpatient Length of Stay Intern. Med. J. n/a

    Google Scholar 

  46. Trunfio, T.A., Borrelli, A., Improta, G.: Is it possible to predict the length of stay of patients undergoing hip-replacement surgery? Int. J. Environ. Res. Public Health 19(10), 6219 (2022)

    Google Scholar 

  47. Ponsiglione, A.M., Profeta, M., Giglio, C., Lombardi, A., Borrelli, A., Scala, A.: Modeling the variation in length of stay for appendectomy and cholecystectomy interventions in the emergency general surgery (2021)

    Google Scholar 

  48. Profeta, M., et al.: Impact of diagnostic techniques on the length of stay in emergency medicine. In: 2021 International Symposium on Biomedical Engineering and Computational Biology, pp. 1–4, August 2021

    Google Scholar 

  49. Smeraglia, F., Basso, M.A., Famiglietti, G., Cozzolino, A., Balato, G., Bernasconi, A.: Pyrocardan® interpositional arthroplasty for trapeziometacarpal osteoarthritis: a minimum four year follow-up. Int. Orthop. 46(8), 1803–1810 (2022)

    Article  PubMed  Google Scholar 

  50. Mariconda, M., Soscia, E., Sirignano, C., Smeraglia, F., Soldati, A., Balato, G.: Long-term clinical results and MRI changes after tendon ball arthroplasty for advanced Kienbock’s disease. J. Hand Surg. Eur. 38(5), 508–514 (2013)

    Article  CAS  Google Scholar 

  51. Smeraglia, F., Del Buono, A., Maffulli, N.: Endoscopic cubital tunnel release: a systematic review. Br. Med. Bull. 116, 155–163 (2015)

    PubMed  Google Scholar 

  52. Smeraglia, F., Basso, M.A., Famiglietti, G., Eckersley, R., Bernasconi, A., Balato, G.: Partial wrist denervation versus total wrist denervation: a systematic review of the literature. Hand Surg. Rehabil. 39(6), 487–491 (2020)

    Article  CAS  PubMed  Google Scholar 

  53. Guarino, F., Improta, G., Triassi, M., Castiglione, S., Cicatelli, A.: Air quality biomonitoring through Olea Europaea l.: the study case of land of pyres. Chemosphere 282, 131052 (2021). https://doi.org/10.1016/j.chemosphere.2021.131052

  54. Guarino, F., Improta, G., Triassi, M., Cicatelli, A., Castiglione, S.: Effects of zinc pollution and compost amendment on the root microbiome of a metal tolerant poplar clone. Front. Microbiol. 11, 1677 (2020). https://doi.org/10.3389/fmicb.2020.01677

    Article  PubMed  PubMed Central  Google Scholar 

  55. Guarino, F., et al.: Genetic characterization, micropropagation, and potential use for arsenic phytoremediation of Dittrichia viscosa (L.) Greuter. Ecotoxicol. Environ. Saf. 148, 675–683 (2018). https://doi.org/10.1016/j.ecoenv.2017.11.010

  56. Guarino, F., Cicatelli, A., Brundu, G., Improta, G., Triassi, M., Castiglione, S.: The use of MSAP reveals epigenetic diversity of the invasive clonal populations of Arundo donax L PLoS One 14 (2019). https://doi.org/10.1371/journal.pone.0215096

  57. De Agostini, A., et al.: Heavy metal tolerance of orchid populations growing on abandoned mine tailings: a case study in Sardinia Island (Italy). Ecotoxicol. Environ. Saf. 189, 110018 (2020). https://doi.org/10.1016/j.ecoenv.2019.110018

  58. Moccia, E., et al.: Use of Zea mays L. in phytoremediation of trichloroethylene. Environ. Sci. Pollut. Res. 24, 11053–11060 (2017). https://doi.org/10.1007/s11356-016-7570-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Rosaria Marino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valente, A.S. et al. (2023). Multiple Linear Regression to Analyze the Effect of Emergency Diagnostic Procedures on the Hospitalization. In: Wen, S., Yang, C. (eds) Biomedical and Computational Biology. BECB 2022. Lecture Notes in Computer Science(), vol 13637. Springer, Cham. https://doi.org/10.1007/978-3-031-25191-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25191-7_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25190-0

  • Online ISBN: 978-3-031-25191-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics