[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

From Less to More: Common-Sense Semantic Perception Benefits Image Captioning

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Abstract

Most recent arts in image captioning rely solely on exploring the information contains in the image or modeling the inner-relations among visual features, which fails to generate informative captions in some cases. Part of what defines humans is the ability of common-sense reasoning behind semantic association, which is different from machines. To this end, we propose a Common-Sense Aware method (CSA) for image captioning, which capitalizes general prior knowledge to associate extra semantic information during generation to infer more informative captions. Specifically, based on ConceptNet, we extract common-sense knowledge features using pre-generated concepts to provide comprehensive associated semantic information for captioning. We conduct extensive experiments on the MS COCO dataset to demonstrate the effectiveness of CSA, results show that it furthers state-of-the-arts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cocodataset.org/.

  2. 2.

    https://github.com/tylin/coco-caption.

References

  1. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6077–6086 (2018)

    Google Scholar 

  2. Antol, S., Agrawal, A., Lu, J., Mitchell, M., Parikh, D.: VQA: visual question answering. Int. J. Comput. Vis. 123(1), 4–31 (2015)

    MathSciNet  Google Scholar 

  3. Dong, G., Zhang, X., Lan, L., Wang, S., Luo, Z.: Label guided correlation hashing for large-scale cross-modal retrieval. Multimed. Tools Appl. 78(21), 30895–30922 (2019). https://doi.org/10.1007/s11042-019-7192-5

    Article  Google Scholar 

  4. Feng, Y., Chen, X., Lin, B.Y., Wang, P., Yan, J., Ren, X.: Scalable multi-hop relational reasoning for knowledge-aware question answering. In: Conference on Empirical Methods in Natural Language Processing (2020)

    Google Scholar 

  5. Gao, L., Fan, K., Song, J., Liu, X., Xu, X., Shen, H.T.: Deliberate attention networks for image captioning. In: AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  6. Gu, J., Cai, J., Wang, G., Chen, T.: Stack-captioning: coarse-to-fine learning for image captioning. In: AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  7. He, C., Hu, H.: Image captioning with visual-semantic double attention. ACM Trans. Multimed. Computi. Commun. Appl. 15(1), 26 (2019)

    Google Scholar 

  8. Hodosh, M., Young, P., Hockenmaier, J.: Framing image description as a ranking task: data, models and evaluation metrics. J. Artif. Intell. Res. 47(1), 853–899 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Huang, F., Li, Z., Chen, S., Zhang, C., Ma, H.: Image captioning with internal and external knowledge. In: 29th ACM International Conference on Information and Knowledge Management (2020)

    Google Scholar 

  10. Huang, L., Wang, W., Chen, J., Wei, X.Y.: Attention on attention for image captioning. In: IEEE International Conference on Computer Vision, pp. 4634–4643 (2019)

    Google Scholar 

  11. Ji, J., Xu, C., Zhang, X., Wang, B., Song, X.: Spatio-temporal memory attention for image captioning. IEEE Trans. Image Process. 29, 7615–7628 (2020)

    Article  MATH  Google Scholar 

  12. Jiang, W., Ma, L., Jiang, Y.-G., Liu, W., Zhang, T.: Recurrent fusion network for image captioning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 510–526. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_31

    Chapter  Google Scholar 

  13. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3128–3137 (2015)

    Google Scholar 

  14. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  15. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6, 167–195 (2015)

    Article  Google Scholar 

  16. Lin, B.Y., Chen, X., Chen, J., Ren, X.: KagNet: knowledge-aware graph networks for commonsense reasoning. arXiv abs/1909.02151 (2019)

    Google Scholar 

  17. Liu, D., Zha, Z.J., Zhang, H., Zhang, Y., Wu, F.: Context-aware visual policy network for sequence-level image captioning. In: 26th ACM International Conference on Multimedia, pp. 1416–1424 (2018)

    Google Scholar 

  18. Lu, J., Xiong, C., Parikh, D., Socher, R.: Knowing when to look: adaptive attention via a visual sentinel for image captioning. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 6, p. 2 (2017)

    Google Scholar 

  19. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  20. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  21. Tan, H., Zhang, X., Lan, L., Huang, X., Luo, Z.: Nonnegative constrained graph based canonical correlation analysis for multi-view feature learning. Neural Process. Lett. 50(2), 1215–1240 (2018). https://doi.org/10.1007/s11063-018-9904-7

    Article  Google Scholar 

  22. Vedantam, R., Zitnick, C.L., Parikh, D.: CIDEr: consensus-based image description evaluation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)

    Google Scholar 

  23. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)

    Google Scholar 

  24. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  25. Wu, Q., Shen, C., Wang, P., Dick, A., Hengel, A.V.: Image captioning and visual question answering based on attributes and external knowledge. IEEE Trans. Pattern Anal. Mach. Intell. 40, 1367–1381 (2018)

    Article  Google Scholar 

  26. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. Computer Science, pp. 2048–2057 (2015)

    Google Scholar 

  27. Yao, T., Pan, Y., Li, Y., Qiu, Z., Mei, T.: Boosting image captioning with attributes. In: IEEE International Conference on Computer Vision, pp. 22–29 (2017)

    Google Scholar 

  28. Zhou, Y., Sun, Y., Honavar, V.G.: Improving image captioning by leveraging knowledge graphs. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 283–293 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Project of China (No. 2021ZD0110700) and the National Natural Science Foundation of China (No. 62002373).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, F., Li, X., Tang, J., Li, S., Wang, T. (2023). From Less to More: Common-Sense Semantic Perception Benefits Image Captioning. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13422. Springer, Cham. https://doi.org/10.1007/978-3-031-25198-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25198-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25197-9

  • Online ISBN: 978-3-031-25198-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics