[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Model Signatures for Design and Usage of Simulation-Capable Model Networks in MBSE

  • Conference paper
  • First Online:
Product Lifecycle Management. PLM in Transition Times: The Place of Humans and Transformative Technologies (PLM 2022)

Abstract

Product development is characterised by numerous synthesis and analysis loops. Analysis provides information on the fulfillment of the required properties of the system under development. Analysis results therefore are an important basis for further synthesis steps. In the context of Model-Based Systems Engineering (MBSE), different types of simulation models play an important role. The overall system (product) can be broken down to system elements. For each system element a set of models has to be established, that provides the required degrees of fidelity, representations of system properties, flows, etc. reflecting the variety of modelling purposes. These models have to be integrated horizontally (same system level along the relevant flows of material, energy, and information) and vertically (aggregation from subsystem level to the overall system level, refinement in the opposite direction) to create a holistic model-based system representation. An important and challenging task is to identify and shape relevant subsystem models. In order to define an appropriate structure of these models, model developers may utilize criteria like selected properties of system elements and interrelations, their degree of detail or modelling assumptions. The relevant criteria have to be made transparent. For this purpose, the paper discusses the concept of model signatures that contain relevant meta information about each single model of all system elements, subsystems up to models of the overall system. This standardized meta information enables an identification and selection of those models and the decision on the necessary model integration. The concept is discussed on the basis of a roller bearing as an example out of an electro-mechanical drivetrain. A potential analysis provides information about the possible usage of the model signatures concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weber, C., Husung, S.: Virtualisation of product development/design - seen from design theory and methodology. In: 18th International Conference on Engineering Design (ICED 2011), pp. 226–235 (2011)

    Google Scholar 

  2. VDI: Entwicklung technischer Produkte und Systeme/Design of technical products and systems. Blatt 2 (VDI 2221:2019) (2019)

    Google Scholar 

  3. Ropohl, G.: Systemtechnik. Grundlagen und Anwendung, Hanser, München (1975)

    Google Scholar 

  4. Ariyo, O.O., Eckert, C.M., Clarkson, P.J.: Hierarchical decompositions for complex product representation. In: 10th International Design Conference, pp. 737–744 (2008)

    Google Scholar 

  5. Browning, T.R.: Applying the design structure matrix to system decomposition and integration problems: a review and new directions. IEEE Trans. Eng. Manag. 48(3), 292–306 (2001). https://doi.org/10.1109/17.946528

    Article  Google Scholar 

  6. Jacobs, G., Konrad, C., Berroth, J., Zerwas, T., Höpfner, G., Spütz, K.: Function-oriented model-based product development. In: Krause, D., Heyden, E. (eds.) Design Methodology for Future Products, pp. 243–263. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-78368-6_13

    Chapter  Google Scholar 

  7. VDI: Entwicklungsmethodik für mechatronische Systeme/Design methodology for mechatronic systems (VDI 2206:2004) (2004)

    Google Scholar 

  8. Rumpe, B.: Modeling with UML. Language, Concepts, Methods. Springer eBook Collection Computer Science. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33933-7

  9. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling Language, 3rd edn. The MK/OMG Press, Burlington (2015)

    Google Scholar 

  10. Husung, S., Weber, C., Mahboob, A.: Model-based systems engineering: a new way for function-driven product development. In: Krause, D., Heyden, E. (eds.) Design Methodology for Future Products, pp. 221–241. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-78368-6_12

    Chapter  Google Scholar 

  11. Zerwas, T., et al.: Mechanical concept development using principle solution models. In: IOP Conference Series: Materials Science and Engineering, p. 012001 (2021). https://doi.org/10.1088/1757-899X/1097/1/012001

  12. Hick, H., Bajzek, M., Faustmann, C.: Definition of a system model for model-based development. SN Appl. Sci. 1(9), 1–15 (2019). https://doi.org/10.1007/s42452-019-1069-0

    Article  Google Scholar 

  13. Blochwitz, T., et al.: The functional mockup interface for tool independent exchange of simulation models. In: Proceedings of the 8th International Modelica Conference, pp. 105–114 (2011)

    Google Scholar 

  14. Bretz, L., Tschirner, C., Dumitrescu, R.: A concept for managing information in early stages of product engineering by integrating MBSE and workflow management systems. In: IEEE International Symposium on Systems Engineering (ISSE), pp. 1–8 (2016)

    Google Scholar 

  15. Heber, D.T., Groll, M.W.: A meta-model to connect model-based systems engineering with product data management by dint of the blockchain. In: IEEE International Conference on Intelligent Systems (IS), pp. 280–287 (2018). https://doi.org/10.1109/IS.2018.8710527

  16. Kirsch, L., Müller, P., Eigner, M., Muggeo, C.: SysML-Modellverwaltung im PDM/PLM-Umfeld. In: Tag des Systems Engineering, pp. 333–342. Carl Hanser (2016)

    Google Scholar 

  17. Wang, C.: MBSE-compliant product lifecycle model management. In: 14th Annual Conference System of Systems Engineering (SoSE), pp. 248–253. IEEE (2019). https://doi.org/10.1109/SYSOSE.2019.8753869

  18. Parrott, E.L., Spayd, L.C.: Configuration and data management of the NASA power and propulsion element MBSE model(s). In: 2020 IEEE Aerospace Conference, pp. 1–11. IEEE (2020). https://doi.org/10.1109/AERO47225.2020.9172375

  19. Hu, C., Xu, C., Fan, G., Li, H., Song, D.: A simulation model design method for cloud-based simulation environment. Adv. Mech. Eng. 5, 932684 (2013)

    Article  Google Scholar 

  20. Allen, C., Di Maio, M., Kapos, G.-D., Klusmann, N.: MDDP: a pragmatic approach to managing complex and complicated MBSE models. In: IEEE International Symposium on Systems Engineering (ISSE), pp. 1–8 (2016). https://doi.org/10.1109/SysEng.2016.7753165

  21. Friedl, M., Weingartner, L., Hehenberger, P., Scheidl, R.: Model dependency maps for transparent concurrent engineering processes. In: 14th Mechatronics Forum International Conference (Mechatronics 2014), pp. 614–621 (2014)

    Google Scholar 

  22. Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley (2011)

    Google Scholar 

  23. Clark, T., van den Brand, M., Combemale, B., Rumpe, B.: Conceptual model of the globalization for domain-specific languages. In: Cheng, B.H.C., Combemale, B., France(†), R.B., Jézéquel, J.-M., Rumpe, B. (eds.) Globalizing Domain-Specific Languages. LNCS, vol. 9400, pp. 7–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26172-0_2

    Chapter  Google Scholar 

  24. Butting, A., Hölldobler, K., Rumpe, B., Wortmann, A.: Compositional modelling languages with analytics and construction infrastructures based on object-oriented techniques—the MontiCore approach. In: Heinrich, R., Durán, F., Talcott, C., Zschaler, S. (eds) Composing Model-Based Analysis Tools, pp. 217–234. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81915-6_10

  25. Koller, R.: Konstruktionslehre für den Maschinenbau. Grundlagen zur Neu- und Weiterentwicklung technischer Produkte mit Beispielen. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-662-08165-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Husung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Husung, S. et al. (2023). Model Signatures for Design and Usage of Simulation-Capable Model Networks in MBSE. In: Noël, F., Nyffenegger, F., Rivest, L., Bouras, A. (eds) Product Lifecycle Management. PLM in Transition Times: The Place of Humans and Transformative Technologies. PLM 2022. IFIP Advances in Information and Communication Technology, vol 667. Springer, Cham. https://doi.org/10.1007/978-3-031-25182-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25182-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25181-8

  • Online ISBN: 978-3-031-25182-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics