[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Video in 10 Bits: Few-Bit VideoQA for Efficiency and Privacy

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13805))

Included in the following conference series:

  • 1806 Accesses

Abstract

In Video Question Answering (VideoQA), answering general questions about a video requires its visual information. Yet, video often contains redundant information irrelevant to the VideoQA task. For example, if the task is only to answer questions similar to “Is someone laughing in the video?”, then all other information can be discarded. This paper investigates how many bits are really needed from the video in order to do VideoQA by introducing a novel Few-Bit VideoQA problem, where the goal is to accomplish VideoQA with few bits of video information (e.g., 10 bits). We propose a simple yet effective task-specific feature compression approach to solve this problem. Specifically, we insert a lightweight Feature Compression Module (FeatComp) into a VideoQA model which learns to extract task-specific tiny features as little as 10 bits, which are optimal for answering certain types of questions. We demonstrate more than 100,000-fold storage efficiency over MPEG4-encoded videos and 1,000-fold over regular floating point features, with just 2.0–6.6% absolute loss in accuracy, which is a surprising and novel finding. Finally, we analyze what the learned tiny features capture and demonstrate that they have eliminated most of the non-task-specific information, and introduce a Bit Activation Map to visualize what information is being stored. This decreases the privacy risk of data by providing k-anonymity and robustness to feature-inversion techniques, which can influence the machine learning community, allowing us to store data with privacy guarantees while still performing the task effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the MSRVTT-QA dataset the videos are 630 KB on average, which consists of \(320\times 240\)-resolution videos, 15 s on average.

  2. 2.

    ClipBERT uses 16-bit precision, we use this for calculation.

  3. 3.

    https://www.sourceware.org/bzip2.

  4. 4.

    numpy.savez_compressed.

  5. 5.

    en.wikipedia.org/wiki/Information_content.

  6. 6.

    github.com/Koukyosyumei/secure_ml.

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (2016)

    Google Scholar 

  2. Cambridge, A.L.: The orl database. https://www.cl.cam.ac.uk/research/dtg/ attarchive/facedatabase.html

  3. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: CVPR (2017)

    Google Scholar 

  4. Chadha, A., Andreopoulos, Y.: Deep perceptual preprocessing for video coding. In: CVPR (2021)

    Google Scholar 

  5. Chen, X., et al.: Microsoft coco captions: data collection and evaluation server. arXiv (2015)

    Google Scholar 

  6. Choi, J., Han, B.: Task-aware quantization network for JPEG image compression. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 309–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_19

    Chapter  Google Scholar 

  7. Djelouah, A., Campos, J., Schaub-Meyer, S., Schroers, C.: Neural inter-frame compression for video coding. In: ICCV (2019)

    Google Scholar 

  8. Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: ICCV (2019)

    Google Scholar 

  9. Feng, R., Wu, Y., Guo, Z., Zhang, Z., Chen, Z.: Learned video compression with feature-level residuals. In: CVPR Workshops (2020)

    Google Scholar 

  10. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (2015)

    Google Scholar 

  11. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in VQA matter: elevating the role of image understanding in visual question answering. In: CVPR, July 2017

    Google Scholar 

  12. He, T., Sun, S., Guo, Z., Chen, Z.: Beyond coding: detection-driven image compression with semantically structured bit-stream. In: PCS (2019)

    Google Scholar 

  13. Hu, Z., Chen, Z., Xu, D., Lu, G., Ouyang, W., Gu, S.: Improving deep video compression by resolution-adaptive flow coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 193–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_12

    Chapter  Google Scholar 

  14. Hu, Z., Lu, G., Xu, D.: FVC: a new framework towards deep video compression in feature space. In: CVPR (2021)

    Google Scholar 

  15. Huang, D., Chen, P., Zeng, R., Du, Q., Tan, M., Gan, C.: Location-aware graph convolutional networks for video question answering. In: AAAI (2020)

    Google Scholar 

  16. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  17. Jang, Y., Song, Y., Yu, Y., Kim, Y., Kim, G.: TGIF-QA: toward spatio-temporal reasoning in visual question answering. In: CVPR (2017)

    Google Scholar 

  18. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. IJCV 123, 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  19. Le, T.M., Le, V., Venkatesh, S., Tran, T.: Hierarchical conditional relation networks for video question answering. In: CVPR (2020)

    Google Scholar 

  20. Lei, J., et al.: Less is more: ClipBERT for video-and-language learning via sparse sampling. In: CVPR (2021)

    Google Scholar 

  21. Lei, J., Yu, L., Bansal, M., Berg, T.L.: TVQA: localized, compositional video question answering. arXiv preprint arXiv:1809.01696 (2018)

  22. Li, L., Chen, Y.C., Cheng, Y., Gan, Z., Yu, L., Liu, J.: Hero: Hierarchical encoder for video+language omni-representation pre-training. In: EMNLP (2020)

    Google Scholar 

  23. Li, L., Pal, B., Ali, J., Sullivan, N., Chatterjee, R., Ristenpart, T.: Protocols for checking compromised credentials. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (2019)

    Google Scholar 

  24. Lin, J., Liu, D., Li, H., Wu, F.: M-LVC: multiple frames prediction for learned video compression. In: CVPR (2020)

    Google Scholar 

  25. Lin, T., Liu, X., Li, X., Ding, E., Wen, S.: BMN: boundary-matching network for temporal action proposal generation. In: ECCV (2019)

    Google Scholar 

  26. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  27. Lu, G., Ouyang, W., Xu, D., Zhang, X., Cai, C., Gao, Z.: DVC: an end-to-end deep video compression framework. In: CVPR (2019)

    Google Scholar 

  28. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: CVPR (2015)

    Google Scholar 

  29. Miech, A., Alayrac, J.B., Smaira, L., Laptev, I., Sivic, J., Zisserman, A.: End-to-end learning of visual representations from uncurated instructional videos. In: CVPR (2020)

    Google Scholar 

  30. Miech, A., Zhukov, D., Alayrac, J.B., Tapaswi, M., Laptev, I., Sivic, J.: HowTo100M: learning a text-video embedding by watching hundred million narrated video clips. In: ICCV (2019)

    Google Scholar 

  31. Minderer, M., Sun, C., Villegas, R., Cole, F., Murphy, K., Lee, H.: Unsupervised learning of object structure and dynamics from videos. arXiv preprint arXiv:1906.07889 (2019)

  32. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  33. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression (1998)

    Google Scholar 

  34. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV (2017)

    Google Scholar 

  35. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circ. Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  36. Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: VideoBERT: a joint model for video and language representation learning. In: ICCV (2019)

    Google Scholar 

  37. Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun, R., Fidler, S.: MovieQA: understanding stories in movies through question-answering. In: CVPR (2016)

    Google Scholar 

  38. Toderici, G., et al.: Variable rate image compression with recurrent neural networks. arXiv preprint arXiv:1511.06085 (2015)

  39. Toderici, G., et al.: Full resolution image compression with recurrent neural networks. In: CVPR (2017)

    Google Scholar 

  40. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: CVPR (2018)

    Google Scholar 

  41. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38, 18–34 (1992)

    Article  Google Scholar 

  42. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circ. Syst. Video Technol. 13, 560–576 (2003)

    Google Scholar 

  43. Wu, C.-Y., Singhal, N., Krähenbühl, P.: Video compression through image interpolation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 425–440. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_26

    Chapter  Google Scholar 

  44. Xu, D., et al.: Video question answering via gradually refined attention over appearance and motion. In: ACM MM (2017)

    Google Scholar 

  45. Zhu, L., Xu, Z., Yang, Y., Hauptmann, A.: Uncovering the temporal context for video question answering. IJCV 124, 409–421 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We would like to thank Vicente Ordonez for his valuable feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyuan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, S., Piramuthu, R., Chang, SF., Sigurdsson, G.A. (2023). Video in 10 Bits: Few-Bit VideoQA for Efficiency and Privacy. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25072-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25071-2

  • Online ISBN: 978-3-031-25072-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics