[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SimpleDG: Simple Domain Generalization Baseline Without Bells and Whistles

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13806))

Included in the following conference series:

  • 1716 Accesses

Abstract

We present a simple domain generalization baseline, which wins second place in both the common context generalization track and the hybrid context generalization track respectively in NICO CHALLENGE 2022. We verify the founding in recent literature, domainbed, that ERM is a strong baseline compared to recent state-of-the-art domain generalization methods and propose SimpleDG which includes several simple yet effective designs that further boost generalization performance. Code is available at https://github.com/megvii-research/SimpleDG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, D., Yang, Y., Song, Y.-Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)

    Google Scholar 

  2. Fang, C., Xu, Y., Rockmore, D.N.: Unbiased metric learning: on the utilization of multiple datasets and web images for softening bias. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1657–1664 (2013)

    Google Scholar 

  3. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)

    Google Scholar 

  4. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1406–1415 (2019)

    Google Scholar 

  5. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5400–5409 (2018)

    Google Scholar 

  6. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)

  7. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. arXiv preprint arXiv:2104.02008 (2021)

  8. Cha, J., et al.: SWAD: domain generalization by seeking flat minima. Adv. Neural. Inf. Process. Syst. 34, 22405–22418 (2021)

    Google Scholar 

  9. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. arXiv preprint arXiv:2007.01434 (2020)

  10. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

    Article  Google Scholar 

  11. Zhang, X., Zhou, L., Xu, R., Cui, P., Shen, Z., Liu, H.: NICO++: towards better benchmarking for domain generalization. ArXiv, abs/2204.08040 (2022)

    Google Scholar 

  12. Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neural networks for group shifts: on the importance of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731 (2019)

  13. Kim, D., Yoo, Y., Park, S., Kim, J., Lee, J.: SelfReg: self-supervised contrastive regularization for domain generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9619–9628 (2021)

    Google Scholar 

  14. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  15. Pezeshki, M., Kaba, O., Bengio, Y., Courville, A.C., Precup, D., Lajoie, G.: Gradient starvation: a learning proclivity in neural networks. Adv. Neural Inf. Process. Syst. 34, 1256–1272 (2021)

    Google Scholar 

  16. Huang, Z., Wang, H., Xing, E.P., Huang, D.: Self-challenging improves cross-domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 124–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_8

    Chapter  Google Scholar 

  17. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  18. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  19. Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., Jégou, H.: Going deeper with image transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 32–42 (2021)

    Google Scholar 

  20. Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  21. Wightman, R.: Pytorch image models (2019). https://github.com/rwightman/pytorch-image-models

  22. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  23. Harris, E., Marcu, A., Painter, M., Niranjan, M., Prügel-Bennett, A., Hare, J.: FMix: enhancing mixed sample data augmentation. arXiv preprint arXiv:2002.12047 (2020)

  24. Pinto, F., Yang, H., Lim, S.-N., Torr, P.H.S., Dokania, P.K.: RegMixup: mixup as a regularizer can surprisingly improve accuracy and out distribution robustness. arXiv preprint arXiv:2206.14502 (2022)

  25. Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4085–4095 (2020)

    Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  27. Li, S., et al.: PyTorch distributed: experiences on accelerating data parallel training. arXiv preprint arXiv:2006.15704 (2020)

  28. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Lv .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 194 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, Z. et al. (2023). SimpleDG: Simple Domain Generalization Baseline Without Bells and Whistles. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13806. Springer, Cham. https://doi.org/10.1007/978-3-031-25075-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25075-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25074-3

  • Online ISBN: 978-3-031-25075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics