[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Scene-Adaptive Temporal Stabilisation for Video Colourisation Using Deep Video Priors

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

Automatic image colourisation methods applied independently to each video frame usually lead to flickering artefacts or propagation of errors because of differences between neighbouring frames. While this can be partially solved using optical flow methods, complex scenarios such as the appearance of new objects in the scene limit the efficiency of such solutions. To address this issue, we propose application of blind temporal consistency, learned during the inference stage, to consistently adapt colourisation to the given frames. However, training at test time is extremely time-consuming and its performance is highly dependent on the content, motion, and length of the input video, requiring a large number of iterations to generalise to complex sequences with multiple shots and scene changes. This paper proposes a generalised framework for colourisation of complex videos with an optimised few-shot training strategy to learn scene-aware video priors. The proposed architecture is jointly trained to stabilise the input video and to cluster its frames with the aim of learning scene-specific modes. Experimental results show performance improvement in complex sequences while requiring less training data and significantly fewer iterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.videvo.net/.

References

  1. Akimoto, N., Hayakawa, A., Shin, A., Narihira, T.: Reference-based video colorization with spatiotemporal correspondence. arXiv preprint arXiv:2011.12528 (2020)

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: A randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24 (2009)

    Article  Google Scholar 

  3. Bertinetto, L., Henriques, J.F., Valmadre, J., Torr, P., Vedaldi, A.: Learning feed-forward one-shot learners. Advances in neural information processing systems 29 (2016)

    Google Scholar 

  4. Blanch, M.G., Khalifeh, I., O’Connor, N.E., Mrak, M.: Attention-based stylisation for exemplar image colourisation. In: 2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6 (2021). https://doi.org/10.1109/MMSP53017.2021.9733506

  5. Bonneel, N., Tompkin, J., Sunkavalli, K., Sun, D., Paris, S., Pfister, H.: Blind video temporal consistency. ACM Transactions on Graphics (TOG) 34(6), 1–9 (2015)

    Article  Google Scholar 

  6. Bugeau, A., Ta, V.T., Papadakis, N.: Variational exemplar-based image colorization. IEEE Transactions on Image Processing 23(1), 298–307 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Connolly, C., Fleiss, T.: A study of efficiency and accuracy in the transformation from rgb to cielab color space. IEEE transactions on image processing 6(7), 1046–1048 (1997)

    Article  Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  9. Edwards, H., Storkey, A.: Towards a neural statistician. arXiv preprint arXiv:1606.02185 (2016)

  10. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE transactions on pattern analysis and machine intelligence 28(4), 594–611 (2006)

    Article  Google Scholar 

  11. Fink, M.: Object classification from a single example utilizing class relevance metrics. Advances in neural information processing systems 17 (2004)

    Google Scholar 

  12. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  13. He, M., Chen, D., Liao, J., Sander, P.V., Yuan, L.: Deep exemplar-based colorization. ACM Transactions on Graphics (TOG) 37(4), 1–16 (2018)

    Google Scholar 

  14. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  15. Huang, Y.C., Tung, Y.S., Chen, J.C., Wang, S.W., Wu, J.L.: An adaptive edge detection based colorization algorithm and its applications. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, pp. 351–354 (2005)

    Google Scholar 

  16. Jampani, V., Gadde, R., Gehler, P.V.: Video propagation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 451–461 (2017)

    Google Scholar 

  17. Lai, W.S., Huang, J.B., Wang, O., Shechtman, E., Yumer, E., Yang, M.H.: Learning blind video temporal consistency. In: Proceedings of the European conference on computer vision (ECCV). pp. 170–185 (2018)

    Google Scholar 

  18. Lei, C., Chen, Q.: Fully automatic video colorization with self-regularization and diversity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3753–3761 (2019)

    Google Scholar 

  19. Lei, C., Xing, Y., Chen, Q.: Blind video temporal consistency via deep video prior. Advances in Neural Information Processing Systems 33, 1083–1093 (2020)

    Google Scholar 

  20. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: ACM SIGGRAPH 2004 Papers, pp. 689–694 (2004)

    Google Scholar 

  21. Liu, S., Zhong, G., De Mello, S., Gu, J., Jampani, V., Yang, M.H., Kautz, J.: Switchable temporal propagation network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 87–102 (2018)

    Chapter  Google Scholar 

  22. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. Oakland, CA, USA (1967)

    Google Scholar 

  23. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2929–2936. IEEE (2009)

    Google Scholar 

  24. Mrak, M.: Ai gets creative. In: Proceedings of the 1st International Workshop on AI for Smart TV Content Production, Access and Delivery, AI4TV 2019, pp. 1–2. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3347449.3357490

  25. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning (2016)

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  27. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  28. Tai, Y.W., Jia, J., Tang, C.K.: Local color transfer via probabilistic segmentation by expectation-maximization. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 747–754. IEEE (2005)

    Google Scholar 

  29. Vitoria, P., Raad, L., Ballester, C.: Chromagan: adversarial picture colorization with semantic class distribution. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2445–2454 (2020)

    Google Scholar 

  30. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: A survey on few-shot learning. ACM computing surveys (csur) 53(3), 1–34 (2020)

    Article  Google Scholar 

  31. Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 277–280 (2002)

    Google Scholar 

  32. Yao, C.H., Chang, C.Y., Chien, S.Y.: Occlusion-aware video temporal consistency. In: Proceedings of the 25th ACM international conference on Multimedia, pp. 777–785 (2017)

    Google Scholar 

  33. Yatziv, L., Sapiro, G.: Fast image and video colorization using chrominance blending. IEEE transactions on image processing 15(5), 1120–1129 (2006)

    Article  Google Scholar 

  34. Zhang, B., et al.: Deep exemplar-based video colorization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8052–8061 (2019)

    Google Scholar 

  35. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: European conference on computer vision. pp. 649–666. Springer (2016)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Gorriz Blanch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blanch, M.G., O’Connor, N., Mrak, M. (2023). Scene-Adaptive Temporal Stabilisation for Video Colourisation Using Deep Video Priors. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13804. Springer, Cham. https://doi.org/10.1007/978-3-031-25069-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25069-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25068-2

  • Online ISBN: 978-3-031-25069-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics