[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Anatomy-Aware Contrastive Representation Learning for Fetal Ultrasound

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

Self-supervised contrastive representation learning offers the advantage of learning meaningful visual representations from unlabeled medical datasets for transfer learning. However, applying current contrastive learning approaches to medical data without considering its domain-specific anatomical characteristics may lead to visual representations that are inconsistent in appearance and semantics. In this paper, we propose to improve visual representations of medical images via anatomy-aware contrastive learning (AWCL), which incorporates anatomy information to augment the positive/negative pair sampling in a contrastive learning manner. The proposed approach is demonstrated for automated fetal ultrasound imaging tasks, enabling the positive pairs from the same or different ultrasound scans that are anatomically similar to be pulled together and thus improving the representation learning. We empirically investigate the effect of inclusion of anatomy information with coarse- and fine-grained granularity, for contrastive learning and find that learning with fine-grained anatomy information which preserves intra-class difference is more effective than its counterpart. We also analyze the impact of anatomy ratio on our AWCL framework and find that using more distinct but anatomically similar samples to compose positive pairs results in better quality representations. Experiments on a large-scale fetal ultrasound dataset demonstrate that our approach is effective for learning representations that transfer well to three clinical downstream tasks, and achieves superior performance compared to ImageNet supervised and the current state-of-the-art contrastive learning methods. In particular, AWCL outperforms ImageNet supervised method by 13.8% and state-of-the-art contrastive-based method by 7.1% on a cross-domain segmentation task.

Z. Fu, J. Jiao and R. Yasrab—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Every 8th frame is extracted to reduce temporal redundancy of ultrasound videos.

References

  1. Fetal Anomaly Screen Programme Handbook. NHS Screening Programmes, London (2015)

    Google Scholar 

  2. Azizi, S., et al.: Big self-supervised models advance medical image classification. arXiv:2101.05224 (2021)

  3. Bai, W., et al.: Self-supervised learning for cardiac MR image segmentation by anatomical position prediction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 541–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_60

    Chapter  Google Scholar 

  4. Baumgartner, C.F., et al.: SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans. Med. Imaging 36(11), 2204–2215 (2017)

    Article  Google Scholar 

  5. Cai, Y., et al.: Spatio-temporal visual attention modelling of standard biometry plane-finding navigation. Med. Image Anal. 65, 101762 (2020)

    Article  Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning (ICML), pp. 1597–1607 (2020)

    Google Scholar 

  7. Chen, Y., et al.: USCL: pretraining deep ultrasound image diagnosis model through video contrastive representation learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 627–637. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_60

    Chapter  Google Scholar 

  8. Droste, R., et al.: Ultrasound image representation learning by modeling sonographer visual attention. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 592–604. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_46

    Chapter  Google Scholar 

  9. Drukker, L., et al.: Transforming obstetric ultrasound into data science using eye tracking, voice recording, transducer motion and ultrasound video. Sci. Rep. 11, 14109 (2021)

    Article  Google Scholar 

  10. Haghighi, F., Hosseinzadeh Taher, M.R., Zhou, Z., Gotway, M.B., Liang, J.: Learning semantics-enriched representation via self-discovery, self-classification, and self-restoration. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 137–147. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_14

    Chapter  Google Scholar 

  11. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  13. Hosseinzadeh Taher, M.R., Haghighi, F., Feng, R., Gotway, M.B., Liang, J.: A systematic benchmarking analysis of transfer learning for medical image analysis. In: Albarqouni, S., et al. (eds.) DART/FAIR 2021. LNCS, vol. 12968, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87722-4_1

    Chapter  Google Scholar 

  14. Hu, S.Y., et al.: Self-supervised pretraining with DICOM metadata in ultrasound imaging. In: Proceedings of the 5th Machine Learning for Healthcare Conference, pp. 732–749 (2020)

    Google Scholar 

  15. Islam, A., Chen, C.F.R., Panda, R., Karlinsky, L., Radke, R., Feris, R.: A broad study on the transferability of visual representations with contrastive learning. In: IEEE International Conference on Computer Vision (ICCV), pp. 8845–8855 (2021)

    Google Scholar 

  16. Jiao, J., Cai, Y., Alsharid, M., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Self-supervised contrastive video-speech representation learning for ultrasound. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 534–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_51

    Chapter  Google Scholar 

  17. Jiao, J., Droste, R., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Self-supervised representation learning for ultrasound video. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1847–1850. IEEE (2020)

    Google Scholar 

  18. Khosla, P., et al.: Supervised contrastive learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 18661–18673 (2020)

    Google Scholar 

  19. Kiyasseh, D., Zhu, T., Clifton, D.A.: CLOCS: contrastive learning of cardiac signals across space, time, and patients. In: International Conference on Machine Learning (ICML), vol. 139, pp. 5606–5615 (2021)

    Google Scholar 

  20. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9 (2008)

    Google Scholar 

  21. Paszke, et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  22. Schlemper, J., et al.: Attention-gated networks for improving ultrasound scan plane detection. In: International Conference on Medical Imaging with Deep Learning (MIDL) (2018)

    Google Scholar 

  23. Sharma, H., Drukker, L., Chatelain, P., Droste, R., Papageorghiou, A., Noble, J.: Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos. Med. Image Anal. 69, 101973 (2021)

    Article  Google Scholar 

  24. Sowrirajan, H., Yang, J., Ng, A.Y., Rajpurkar, P.: MoCo-CXR: MoCo pretraining improves representation and transferability of chest X-ray models. In: Medical Imaging with Deep Learning (MIDL) (2021)

    Google Scholar 

  25. Vu, Y.N.T., Wang, R., Balachandar, N., Liu, C., Ng, A.Y., Rajpurkar, P.: MedAug: contrastive learning leveraging patient metadata improves representations for chest X-ray interpretation. In: Machine Learning for Healthcare Conference, vol. 149, pp. 755–769 (2021)

    Google Scholar 

  26. Zhou, H.-Y., Yu, S., Bian, C., Hu, Y., Ma, K., Zheng, Y.: Comparing to learn: surpassing imagenet pretraining on radiographs by comparing image representations. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 398–407. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_39

    Chapter  Google Scholar 

  27. Zhou, Z., et al.: Models genesis: generic autodidactic models for 3D medical image analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 384–393. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_42

    Chapter  Google Scholar 

  28. Zhuang, X., Li, Y., Hu, Y., Ma, K., Yang, Y., Zheng, Y.: Self-supervised feature learning for 3D medical images by playing a Rubik’s cube. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 420–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_46

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Lok Hin Lee, Richard Droste, Yuan Gao and Harshita Sharma for their help with data preparation. This work is supported by the EPSRC Programme Grants Visual AI (EP/T028572/1) and Seebibyte (EP/M013774/1), the ERC Project PULSE (ERC-ADG-2015 694581), the NIH grant U01AA014809, and the NIHR Oxford Biomedical Research Centre. The NVIDIA Corporation is thanked for a GPU donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyu Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, Z., Jiao, J., Yasrab, R., Drukker, L., Papageorghiou, A.T., Noble, J.A. (2023). Anatomy-Aware Contrastive Representation Learning for Fetal Ultrasound. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25066-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25065-1

  • Online ISBN: 978-3-031-25066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics