Abstract
Self-supervised contrastive representation learning offers the advantage of learning meaningful visual representations from unlabeled medical datasets for transfer learning. However, applying current contrastive learning approaches to medical data without considering its domain-specific anatomical characteristics may lead to visual representations that are inconsistent in appearance and semantics. In this paper, we propose to improve visual representations of medical images via anatomy-aware contrastive learning (AWCL), which incorporates anatomy information to augment the positive/negative pair sampling in a contrastive learning manner. The proposed approach is demonstrated for automated fetal ultrasound imaging tasks, enabling the positive pairs from the same or different ultrasound scans that are anatomically similar to be pulled together and thus improving the representation learning. We empirically investigate the effect of inclusion of anatomy information with coarse- and fine-grained granularity, for contrastive learning and find that learning with fine-grained anatomy information which preserves intra-class difference is more effective than its counterpart. We also analyze the impact of anatomy ratio on our AWCL framework and find that using more distinct but anatomically similar samples to compose positive pairs results in better quality representations. Experiments on a large-scale fetal ultrasound dataset demonstrate that our approach is effective for learning representations that transfer well to three clinical downstream tasks, and achieves superior performance compared to ImageNet supervised and the current state-of-the-art contrastive learning methods. In particular, AWCL outperforms ImageNet supervised method by 13.8% and state-of-the-art contrastive-based method by 7.1% on a cross-domain segmentation task.
Z. Fu, J. Jiao and R. Yasrab—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Every 8th frame is extracted to reduce temporal redundancy of ultrasound videos.
References
Fetal Anomaly Screen Programme Handbook. NHS Screening Programmes, London (2015)
Azizi, S., et al.: Big self-supervised models advance medical image classification. arXiv:2101.05224 (2021)
Bai, W., et al.: Self-supervised learning for cardiac MR image segmentation by anatomical position prediction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 541–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_60
Baumgartner, C.F., et al.: SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans. Med. Imaging 36(11), 2204–2215 (2017)
Cai, Y., et al.: Spatio-temporal visual attention modelling of standard biometry plane-finding navigation. Med. Image Anal. 65, 101762 (2020)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning (ICML), pp. 1597–1607 (2020)
Chen, Y., et al.: USCL: pretraining deep ultrasound image diagnosis model through video contrastive representation learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 627–637. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_60
Droste, R., et al.: Ultrasound image representation learning by modeling sonographer visual attention. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 592–604. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_46
Drukker, L., et al.: Transforming obstetric ultrasound into data science using eye tracking, voice recording, transducer motion and ultrasound video. Sci. Rep. 11, 14109 (2021)
Haghighi, F., Hosseinzadeh Taher, M.R., Zhou, Z., Gotway, M.B., Liang, J.: Learning semantics-enriched representation via self-discovery, self-classification, and self-restoration. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 137–147. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_14
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Hosseinzadeh Taher, M.R., Haghighi, F., Feng, R., Gotway, M.B., Liang, J.: A systematic benchmarking analysis of transfer learning for medical image analysis. In: Albarqouni, S., et al. (eds.) DART/FAIR 2021. LNCS, vol. 12968, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87722-4_1
Hu, S.Y., et al.: Self-supervised pretraining with DICOM metadata in ultrasound imaging. In: Proceedings of the 5th Machine Learning for Healthcare Conference, pp. 732–749 (2020)
Islam, A., Chen, C.F.R., Panda, R., Karlinsky, L., Radke, R., Feris, R.: A broad study on the transferability of visual representations with contrastive learning. In: IEEE International Conference on Computer Vision (ICCV), pp. 8845–8855 (2021)
Jiao, J., Cai, Y., Alsharid, M., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Self-supervised contrastive video-speech representation learning for ultrasound. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 534–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_51
Jiao, J., Droste, R., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Self-supervised representation learning for ultrasound video. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1847–1850. IEEE (2020)
Khosla, P., et al.: Supervised contrastive learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 18661–18673 (2020)
Kiyasseh, D., Zhu, T., Clifton, D.A.: CLOCS: contrastive learning of cardiac signals across space, time, and patients. In: International Conference on Machine Learning (ICML), vol. 139, pp. 5606–5615 (2021)
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9 (2008)
Paszke, et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)
Schlemper, J., et al.: Attention-gated networks for improving ultrasound scan plane detection. In: International Conference on Medical Imaging with Deep Learning (MIDL) (2018)
Sharma, H., Drukker, L., Chatelain, P., Droste, R., Papageorghiou, A., Noble, J.: Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos. Med. Image Anal. 69, 101973 (2021)
Sowrirajan, H., Yang, J., Ng, A.Y., Rajpurkar, P.: MoCo-CXR: MoCo pretraining improves representation and transferability of chest X-ray models. In: Medical Imaging with Deep Learning (MIDL) (2021)
Vu, Y.N.T., Wang, R., Balachandar, N., Liu, C., Ng, A.Y., Rajpurkar, P.: MedAug: contrastive learning leveraging patient metadata improves representations for chest X-ray interpretation. In: Machine Learning for Healthcare Conference, vol. 149, pp. 755–769 (2021)
Zhou, H.-Y., Yu, S., Bian, C., Hu, Y., Ma, K., Zheng, Y.: Comparing to learn: surpassing imagenet pretraining on radiographs by comparing image representations. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 398–407. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_39
Zhou, Z., et al.: Models genesis: generic autodidactic models for 3D medical image analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 384–393. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_42
Zhuang, X., Li, Y., Hu, Y., Ma, K., Yang, Y., Zheng, Y.: Self-supervised feature learning for 3D medical images by playing a Rubik’s cube. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 420–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_46
Acknowledgement
The authors would like to thank Lok Hin Lee, Richard Droste, Yuan Gao and Harshita Sharma for their help with data preparation. This work is supported by the EPSRC Programme Grants Visual AI (EP/T028572/1) and Seebibyte (EP/M013774/1), the ERC Project PULSE (ERC-ADG-2015 694581), the NIH grant U01AA014809, and the NIHR Oxford Biomedical Research Centre. The NVIDIA Corporation is thanked for a GPU donation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fu, Z., Jiao, J., Yasrab, R., Drukker, L., Papageorghiou, A.T., Noble, J.A. (2023). Anatomy-Aware Contrastive Representation Learning for Fetal Ultrasound. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-25066-8_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25065-1
Online ISBN: 978-3-031-25066-8
eBook Packages: Computer ScienceComputer Science (R0)