[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13801))

Included in the following conference series:

Abstract

3D multi-object tracking (MOT) has witnessed numerous novel benchmarks and approaches in recent years, especially those under the “tracking-by-detection” paradigm. Despite their progress and usefulness, an in-depth analysis of their strengths and weaknesses is not yet available. In this paper, we summarize current 3D MOT methods into a unified framework by decomposing them into four constituent parts: pre-processing of detection, association, motion model, and life cycle management. We then ascribe the failure cases of existing algorithms to each component and investigate them in detail. Based on the analyses, we propose corresponding improvements which lead to a strong yet simple baseline: SimpleTrack. Comprehensive experimental results on Waymo Open Dataset and nuScenes demonstrate that our final method could achieve new state-of-the-art results with minor modifications. Furthermore, we take additional steps and rethink whether current benchmarks authentically reflect the ability of algorithms for real-world challenges. We delve into the details of existing benchmarks and find some intriguing facts. Finally, we analyze the distribution and causes of remaining failures in SimpleTrack and propose future directions for 3D MOT. Our code is at https://github.com/tusen-ai/SimpleTrack.

Z. Pang—This work is complete during the first author’s internship at TuSimple.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Please check Sect. 5.1 for how we 10 Hz settings on nuScenes.

  2. 2.

    We use py-motmetrics [11] for the analysis.

  3. 3.

    Validation split comparisons are in the supplementary.

  4. 4.

    Because of the submission time limits to nuScenes test set, we are only able to report the “10 Hz-One” variant in Table 5. It will be updated to “10 Hz-Two” once we had the chance.

  5. 5.

    The ID-Switch increases because we output more bounding boxes and IDs. The 0.003 false positives in pedestrians are caused by boxes matched with the same GT box in crowded scenes.

References

  1. Bar-Shalom, Y., Fortmann, T.E., Cable, P.G.: Tracking and data association (1990)

    Google Scholar 

  2. Baser, E., Balasubramanian, V., Bhattacharyya, P., Czarnecki, K.: FANTrack: 3D multi-object tracking with feature association network. In: IV (2019)

    Google Scholar 

  3. Benbarka, N., Schröder, J., Zell, A.: Score refinement for confidence-based 3D multi-object tracking. In: IROS (2021)

    Google Scholar 

  4. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1806–1819 (2011)

    Article  Google Scholar 

  5. Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: ICCV (2019)

    Google Scholar 

  6. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: ICIP (2016)

    Google Scholar 

  7. Braso, G., Leal-Taixe, L.: Learning a neural solver for multiple object tracking. In: CVPR (2020)

    Google Scholar 

  8. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: CVPR (2020)

    Google Scholar 

  9. Chiu, H., Li, J., Ambrus, R., Bohg, J.: Probabilistic 3D multi-modal, multi-object tracking for autonomous driving. In: ICRA (2021)

    Google Scholar 

  10. Chiu, H.k., Prioletti, A., Li, J., Bohg, J.: Probabilistic 3D multi-object tracking for autonomous driving. arXiv:2001.05673 (2020)

  11. py-motmetrics Contributors: py-motmetrics. https://github.com/cheind/py-motmetrics

  12. Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera people tracking with a probabilistic occupancy map. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 267–282 (2007)

    Article  Google Scholar 

  13. Gautam, S., Meyer, G.P., Vallespi-Gonzalez, C., Becker, B.C.: Sdvtracker: real-time multi-sensor association and tracking for self-driving vehicles. arXiv preprint arXiv:2003.04447 (2020)

  14. Genovese, A.F.: The interacting multiple model algorithm for accurate state estimation of maneuvering targets. J. Hopkins APL Tech. Dig. 22(4), 614–623 (2001)

    Google Scholar 

  15. He, J., Huang, Z., Wang, N., Zhang, Z.: Learnable graph matching: incorporating graph partitioning with deep feature learning for multiple object tracking. In: CVPR (2021)

    Google Scholar 

  16. Hornakova, A., Henschel, R., Rosenhahn, B., Swoboda, P.: Lifted disjoint paths with application in multiple object tracking. In: ICML (2020)

    Google Scholar 

  17. Jiang, X., Li, P., Li, Y., Zhen, X.: Graph neural ased end-to-end data association framework for online multiple-object tracking. arXiv preprint arXiv:1907.05315 (2019)

  18. Kim, A., Osep, A., Leal-Taixé, L.: EagerMOT: 3D multi-object tracking via sensor fusion. arxiv:2104.14682 (2021)

  19. Kim, C., Li, F., Ciptadi, A., Rehg, J.M.: Multiple hypothesis tracking revisited. In: ICCV (2015)

    Google Scholar 

  20. Lan, L., Tao, D., Gong, C., Guan, N., Luo, Z.: Online multi-object tracking by quadratic pseudo-boolean optimization. In: IJCAI (2016)

    Google Scholar 

  21. Leal-Taixé, L., Canton-Ferrer, C., Schindler, K.: Learning by tracking: siamese CNN for robust target association. In: CVPR Workshops (2016)

    Google Scholar 

  22. Li, J., Gao, X., Jiang, T.: Graph networks for multiple object tracking. In: WACV (2020)

    Google Scholar 

  23. Liang, T., Lan, L., Luo, Z.: Enhancing the association in multi-object tracking via neighbor graph. arXiv preprint arXiv:2007.00265 (2020)

  24. Liu, Q., Chu, Q., Liu, B., Yu, N.: GSM: graph similarity model for multi-object trackin. In: IJCAI (2020)

    Google Scholar 

  25. Lu, Z., Rathod, V., Votel, R., Huang, J.: RetinaTrack: online single stage joint detection and tracking. In: CVPR (2020)

    Google Scholar 

  26. Pang, J., et al.: Quasi-dense similarity learning for multiple object tracking. In: CVPR (2021)

    Google Scholar 

  27. Pang, Z., Li, Z., Wang, N.: Model-free vehicle tracking and state estimation in point cloud sequences. In: IROS (2021)

    Google Scholar 

  28. Peng, J., et al.: TPM: multiple object tracking with tracklet-plane matching. Pattern Recogn. 107, 107480 (2020)

    Article  Google Scholar 

  29. Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: CVPR (2011)

    Google Scholar 

  30. Pöschmann, J., Pfeifer, T., Protzel, P.: Factor graph based 3D multi-object tracking in point clouds. In: IROS (2020)

    Google Scholar 

  31. Qi, C.R., et al.: Offboard 3D object detection from point cloud sequences. In: CVPR (2021)

    Google Scholar 

  32. Rangesh, A., Trivedi, M.M.: No blind spots: full-surround multi-object tracking for autonomous vehicles using cameras and lidars. In: IV (2019)

    Google Scholar 

  33. Reid, D.: An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24(6), 843–854 (1979)

    Article  Google Scholar 

  34. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union. In: CVPR (2019)

    Google Scholar 

  35. Rezatofighi, S.H., Milan, A., Zhang, Z., Shi, Q., Dick, A., Reid, I.: Joint probabilistic data association revisited. In: ICCV (2015)

    Google Scholar 

  36. Sadeghian, A., Alahi, A., Savarese, S.: Tracking the untrackable: learning to track multiple cues with long-term dependencies. In: ICCV (2017)

    Google Scholar 

  37. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo Open Dataset. arxiv:1912.04838 (2019)

  38. Tang, S., Andres, B., Andriluka, M., Schiele, B.: Subgraph decomposition for multi-target tracking. In: CVPR (2015)

    Google Scholar 

  39. Tang, S., Andres, B., Andriluka, M., Schiele, B.: Multi-person tracking by multicut and deep matching. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 100–111. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_8

    Chapter  Google Scholar 

  40. Weng, X., Wang, J., Held, D., Kitani, K.: 3D multi-object tracking: a baseline and new evaluation metrics. In: IROS (2020)

    Google Scholar 

  41. Weng, X., Wang, Y., Man, Y., Kitani, K.: GNN3DMOT: graph neural network for 3D multi-object tracking with 2D-3D multi-feature learning. In: CVPR (2020)

    Google Scholar 

  42. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: ICIP (2017)

    Google Scholar 

  43. Xu, Y., et al.: How to train your deep multi-object tracker. In: CVPR (2020)

    Google Scholar 

  44. Yang, B., Bai, M., Liang, M., Zeng, W., Urtasun, R.: Auto4D: learning to label 4D objects from sequential point clouds. arxiv:2101.06586 (2021)

  45. Yang, B., Huang, C., Nevatia, R.: Learning affinities and dependencies for multi-target tracking using a CRF model. In: CVPR (2011)

    Google Scholar 

  46. Yin, T., Zhou, X., Krähenbühl, P.: Center-based 3D object detection and tracking. In: CVPR (2021)

    Google Scholar 

  47. Zaech, J., Dai, D., Liniger, A., Danelljan, M., Gool, L.V.: Learnable online graph representations for 3D multi-object tracking. arXiv:2104.11747 (2021)

  48. Roshan Zamir, A., Dehghan, A., Shah, M.: GMCP-tracker: global multi-object tracking using generalized minimum clique graphs. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 343–356. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_25

    Chapter  Google Scholar 

  49. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: CVPR (2008)

    Google Scholar 

  50. Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box. arXiv preprint arXiv:2110.06864 (2021)

  51. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: on the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vis. 129, 1–19 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqi Pang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 256 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pang, Z., Li, Z., Wang, N. (2023). SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13801. Springer, Cham. https://doi.org/10.1007/978-3-031-25056-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25056-9_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25055-2

  • Online ISBN: 978-3-031-25056-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics