Abstract
Recently, a significant boom has been noticed in the generation of a variety of malicious examples ranging from adversarial perturbations to common noises to natural adversaries. These malicious examples are highly effective in fooling almost ‘any’ deep neural network. Therefore, to protect the integrity of deep networks, research efforts have been started in building the defense against these anomalies of the individual category. The prime reason for such individual handling of noises is the lack of one unique dataset which can be used to benchmark against multiple malicious examples and hence in turn can help in building a true ‘universal’ defense algorithm. This research work is an aid towards that goal that created a dataset termed “wide angle anomalies” containing 19 different malicious categories. On top of that, an extensive experimental evaluation has been performed on the proposed dataset using popular deep neural networks to detect these wide-angle anomalies. The experiments help in identifying a possible relationship between different anomalies and how easy or difficult to detect an anomaly if it is seen or unseen during training-testing. We assert that the experiments in seen and unseen category attack training-testing reveals several surprising and interesting outcomes including possible connection among adversaries. We believe it can help in building a universal defense algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
While the results are reported using VGG, similar evaluation analysis (with ± 1–12% as shown in Table 5) is observed across wide range of backbone networks including Xception [11], InceptionV3 [49], DenseNet121 [26], and MobileNet [25]. However, VGG tops each network in the majority of the cases and is hence chosen for detailed study in the paper.
References
Agarwal, A., Goswami, G., Vatsa, M., Singh, R., Ratha, N.K.: Damad: database, attack, and model agnostic adversarial perturbation detector. IEEE Trans. Neural Netw. Learn. Syst. 33, 1–13 (2021). https://doi.org/10.1109/TNNLS.2021.3051529
Agarwal, A., Ratha, N., Vatsa, M., Singh, R.: Exploring robustness connection between artificial and natural adversarial examples. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 179–186 (2022)
Agarwal, A., Ratha, N.K.: Black-box adversarial entry in finance through credit card fraud detection. In: CIKM Workshops (2021)
Agarwal, A., Ratha, N.K.: On the robustness of stock market regressors. In: ECML-PKDD Workshops (2022)
Agarwal, A., Singh, R., Vatsa, M., Ratha, N.: Image transformation-based defense against adversarial perturbation on deep learning models. IEEE Trans. Depend. Secure Comput. 18(5), 2106–2121 (2021). https://doi.org/10.1109/TDSC.2020.3027183
Agarwal, A., Vatsa, M., Singh, R., Ratha, N.: Cognitive data augmentation for adversarial defense via pixel masking. Pattern Recogn. Lett. 146, 244–251 (2021)
Agarwal, A., Vatsa, M., Singh, R., Ratha, N.: Intelligent and adaptive mixup technique for adversarial robustness. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 824–828 (2021). https://doi.org/10.1109/ICIP42928.2021.9506180
Agarwal, A., Vatsa, M., Singh, R., Ratha, N.K.: Noise is inside me! generating adversarial perturbations with noise derived from natural filters. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 3354–3363 (2020)
Andriushchenko, M., Flammarion, N.: Understanding and improving fast adversarial training. Adv. Neural Inf. Process. Syst. 33, 16048–16059 (2020)
Chhabra, S., Agarwal, A., Singh, R., Vatsa, M.: Attack agnostic adversarial defense via visual imperceptible bound. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 5302–5309 (2021). https://doi.org/10.1109/ICPR48806.2021.9412663
Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
Chun, S., Oh, S.J., Yun, S., Han, D., Choe, J., Yoo, Y.: An empirical evaluation on robustness and uncertainty of regularization methods. arXiv preprint arXiv:2003.03879 (2020)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Dodge, S., Karam, L.: Quality resilient deep neural networks. arXiv preprint arXiv:1703.08119 (2017)
Esmaeilpour, M., Cardinal, P., Koerich, A.L.: Cyclic defense gan against speech adversarial attacks. IEEE Signal Process. Lett. 28, 1769–1773 (2021)
Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2019)
Geirhos, R., Temme, C.R., Rauber, J., Schütt, H.H., Bethge, M., Wichmann, F.A.: Generalisation in humans and deep neural networks. Adv. Neural Inf. Process. Syst. 31, 1–13 (2018)
Goel, A., Singh, A., Agarwal, A., Vatsa, M., Singh, R.: Smartbox: benchmarking adversarial detection and mitigation algorithms for face recognition. In: 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–7. IEEE (2018)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
Goswami, G., Agarwal, A., Ratha, N., Singh, R., Vatsa, M.: Detecting and mitigating adversarial perturbations for robust face recognition. Int. J. Comput. Vision 127(6), 719–742 (2019)
Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. arXiv preprint arXiv:1903.12261 (2019)
Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.: Natural adversarial examples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15262–15271 (2021)
Hermann, K., Chen, T., Kornblith, S.: The origins and prevalence of texture bias in convolutional neural networks. Adv. Neural Inf. Process. Syst. 33, 19000–19015 (2020)
Hosseini, H., Poovendran, R.: Semantic adversarial examples. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1614–1619 (2018)
Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Kamann, C., Rother, C.: Benchmarking the robustness of semantic segmentation models with respect to common corruptions. Int. J. Comput. Vision 129(2), 462–483 (2021)
Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. In: Artificial Intelligence Safety and Security, pp. 99–112. Chapman and Hall/CRC (2018)
Landau, B., Smith, L.B., Jones, S.S.: The importance of shape in early lexical learning. Cogn. Dev. 3(3), 299–321 (1988)
Li, F., Liu, X., Zhang, X., Li, Q., Sun, K., Li, K.: Detecting localized adversarial examples: a generic approach using critical region analysis. In: IEEE INFOCOM 2021-IEEE Conference on Computer Communications, pp. 1–10. IEEE (2021)
Li, X., Li, J., Dai, T., Shi, J., Zhu, J., Hu, X.: Rethinking natural adversarial examples for classification models. arXiv preprint arXiv:2102.11731 (2021)
Ma, X., et al.: Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recogn. 110, 107332 (2021)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)
Mikołajczyk, A., Grochowski, M.: Data augmentation for improving deep learning in image classification problem. In: 2018 International Interdisciplinary PhD Workshop (IIPhDW), pp. 117–122. IEEE (2018)
Mintun, E., Kirillov, A., Xie, S.: On interaction between augmentations and corruptions in natural corruption robustness. Adv. Neural Inf. Process. Syst. 34, 1–13 (2021)
Modas, A., Rade, R., Ortiz-Jiménez, G., Moosavi-Dezfooli, S.M., Frossard, P.: Prime: a few primitives can boost robustness to common corruptions. arXiv preprint arXiv:2112.13547 (2021)
Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1765–1773 (2017)
Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)
Morrison, K., Gilby, B., Lipchak, C., Mattioli, A., Kovashka, A.: Exploring corruption robustness: inductive biases in vision transformers and mlp-mixers. arXiv preprint arXiv:2106.13122 (2021)
Pedraza, A., Deniz, O., Bueno, G.: Really natural adversarial examples. Int. J. Mach. Learn. Cybern. 13, 1–13 (2021)
Pei, Y., Huang, Y., Zou, Q., Zhang, X., Wang, S.: Effects of image degradation and degradation removal to cnn-based image classification. IEEE Trans. Pattern Anal. Mach. Intell. 43(4), 1239–1253 (2019)
Raghunathan, A., Xie, S.M., Yang, F., Duchi, J.C., Liang, P.: Adversarial training can hurt generalization. arXiv preprint arXiv:1906.06032 (2019)
Saikia, T., Schmid, C., Brox, T.: Improving robustness against common corruptions with frequency biased models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10211–10220 (2021)
Samangouei, P., Kabkab, M., Chellappa, R.: Defense-gan: protecting classifiers against adversarial attacks using generative models. arXiv preprint arXiv:1805.06605 (2018)
Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., Bethge, M.: Improving robustness against common corruptions by covariate shift adaptation. Adv. Neural Inf. Process. Syst. 33, 11539–11551 (2020)
Shafahi, A., et al.: Adversarial training for free! Adv. Neural Inf. Process. Syst. 32 (2019)
Shafahi, A., Najibi, M., Xu, Z., Dickerson, J., Davis, L.S., Goldstein, T.: Universal adversarial training. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5636–5643 (2020)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
Taheri, H., Pedarsani, R., Thrampoulidis, C.: Asymptotic behavior of adversarial training in binary classification. arXiv preprint arXiv:2010.13275 (2020)
Tramer, F.: Detecting adversarial examples is (nearly) as hard as classifying them. arXiv preprint arXiv:2107.11630 (2021)
Wang, J., et al.: Smsnet: a new deep convolutional neural network model for adversarial example detection. IEEE Trans. Multimedia 24, 230–244 (2021)
Xue, M., Yuan, C., He, C., Wang, J., Liu, W.: Naturalae: natural and robust physical adversarial examples for object detectors. J. Inf. Secur. Appl. 57, 102694 (2021)
Zhang, H., Chen, H., Song, Z., Boning, D., Dhillon, I.S., Hsieh, C.J.: The limitations of adversarial training and the blind-spot attack. arXiv preprint arXiv:1901.04684 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Agarwal, A., Ratha, N., Vatsa, M., Singh, R. (2023). Benchmarking Robustness Beyond \(l_p\) Norm Adversaries. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13801. Springer, Cham. https://doi.org/10.1007/978-3-031-25056-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-25056-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25055-2
Online ISBN: 978-3-031-25056-9
eBook Packages: Computer ScienceComputer Science (R0)