[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Feature-Level Augmentation to Improve Robustness of Deep Neural Networks to Affine Transformations

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13801))

Included in the following conference series:

Abstract

Recent studies revealed that convolutional neural networks do not generalize well to small image transformations, e.g. rotations by a few degrees or translations of a few pixels. To improve the robustness to such transformations, we propose to introduce data augmentation at intermediate layers of the neural architecture, in addition to the common data augmentation applied on the input images. By introducing small perturbations to activation maps (features) at various levels, we develop the capacity of the neural network to cope with such transformations. We conduct experiments on three image classification benchmarks (Tiny ImageNet, Caltech-256 and Food-101), considering two different convolutional architectures (ResNet-18 and DenseNet-121). When compared with two state-of-the-art stabilization methods, the empirical results show that our approach consistently attains the best trade-off between accuracy and mean flip rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azulay, A., Weiss, Y.: Why do deep convolutional networks generalize so poorly to small image transformations? J. Mach. Learn. Res. 20, 1–25 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  3. Chaman, A., Dokmanic, I.: Truly shift-invariant convolutional neural networks. In: Proceedings of CVPR, pp. 3773–3783 (2021)

    Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: Proceedings of ICLR (2021)

    Google Scholar 

  5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: Proceedings of ICLR (2015)

    Google Scholar 

  6. Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset. Technical report, California Institute of Technology (2007)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016)

    Google Scholar 

  8. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: Proceedings of ICLR (2019)

    Google Scholar 

  9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of CVPR, pp. 2261–2269 (2017)

    Google Scholar 

  10. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. arXiv preprint arXiv:2101.01169 (2021)

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of ICLR (2015)

    Google Scholar 

  12. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s. arXiv preprint arXiv:2201.03545 (2022)

  13. Michaelis, C., et al.: Benchmarking robustness in object detection: autonomous driving when winter is coming. arXiv preprint arXiv:1907.07484 (2020)

  14. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: Proceedings of CVPR, pp. 2574–2582 (2016)

    Google Scholar 

  15. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of ASIA CCS, pp. 506–519 (2017)

    Google Scholar 

  16. Ristea, N.C., et al.: CyTran: cycle-consistent transformers for non-contrast to contrast CT translation. arXiv preprint arXiv:2110.06400 (2021)

  17. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  18. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of ICLR (2014)

    Google Scholar 

  19. Volk, G., Müller, S., Bernuth, A.v., Hospach, D., Bringmann, O.: Towards robust CNN-based object detection through augmentation with synthetic rain variations. In: Proceedings of ITSC, pp. 285–292 (2019)

    Google Scholar 

  20. Wu, H., et al.: CvT: introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808 (2021)

  21. Zhang, R.: Making convolutional networks shift-invariant again. In: Proceedings of ICML, vol. 97, pp. 7324–7334 (2019)

    Google Scholar 

  22. Zheng, S., Song, Y., Leung, T., Goodfellow, I.: Improving the robustness of deep neural networks via stability training. In: Proceedings of CVPR, pp. 4480–4488 (2016)

    Google Scholar 

Download references

Acknowledgment

This article has benefited from the support of the Romanian Young Academy, which is funded by Stiftung Mercator and the Alexander von Humboldt Foundation for the period 2020–2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Tudor Ionescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sandru, A., Georgescu, MI., Ionescu, R.T. (2023). Feature-Level Augmentation to Improve Robustness of Deep Neural Networks to Affine Transformations. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13801. Springer, Cham. https://doi.org/10.1007/978-3-031-25056-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25056-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25055-2

  • Online ISBN: 978-3-031-25056-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics