[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Model-Driven User Interface Development: A Systematic Mapping

  • Conference paper
  • First Online:
Human-Computer Interaction (HCI-COLLAB 2022)

Abstract

Model-driven development (MDD) and user interface development (UID) are two interesting research areas in software engineering. While MDD is a paradigm which fosters the models as the main artifact in the software development life cycle, UID deals with methods and techniques for developing high-quality, highly productive user interfaces in terms of usability and reusability. Although research into the use of MDD for UID might well be of interest to the international research community, no such work has yet been published. The aim of this paper is to assess the state of the art in MDD for UID. It mainly focuses on identifying the features of MDD approaches that support UID; how these proposals impact the quality of the software; and what methodological aspects are considered by these proposals. We carried out a systematic mapping study. As a result, 110 papers were analyzed in terms of the criteria obtained from the research questions. This study allows our research questions to be answered. We would like to highlight firstly the predominance of research in purely academic scenarios; secondly, the lack of empirical proof to demonstrate the impact of the approaches; thirdly, the non-existence of methodologies to guide the MDUID process; fourthly, the wide number of tools adopted to support MDUID; and fifthly, the preference for using the task model in the approaches analyzed. This study enables us to determine the state of the art in the topic as well as to identify various problems worthy of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meixner, G., Paternò, F., Vanderdonckt, J.: Past, present, and future of model-based user interface development. i-com 10(3), 2–11 (2011). https://doi.org/10.1524/icom.2011.0026

    Article  Google Scholar 

  2. Martin, C., Braune, A.: Integration of a template system into model-based user interface development workflows. In: Kurosu, M. (ed.) HCI 2017. LNCS, vol. 10271, pp. 480–495. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58071-5_36

    Chapter  Google Scholar 

  3. Silva, P.: User interface declarative models and development environments: a survey. In: Palanque, P., Paternò, F. (eds.) DSV-IS 2000. LNCS, vol. 1946, pp. 207–226. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44675-3_13

    Chapter  Google Scholar 

  4. Gomaa, M., Salah, A., Rahman, S.: Towards a better model based user interface development environment: A comprehensive survey. In: Proceedings of MICS, vol. 5 (2005)

    Google Scholar 

  5. Calvary, G., Coutaz, J.: Introduction to model-based user interfaces. Group Note 7, W3C (2014). https://www.w3.org/2011/mbui/drafts/mbui-intro/

  6. Martínez, Y., Castro, C.C., Beigbeder, S.M.: Evidencia empírica sobre mejoras en productividad y calidad en enfoques MDD: un mapeo sistemático. REICIS: Revista Española de Innovación, Calidad e Ingeniería del Software 7(2), 6–27 (2011)

    Google Scholar 

  7. Mohagheghi, P., et al.: Where does model-driven engineering help? Experiences from three industrial cases. Softw. Syst. Model. 12(3), 619–639 (2013). https://doi.org/10.1007/s10270-011-0219-7

    Article  Google Scholar 

  8. Petersen, K., et al.: Systematic mapping studies in software engineering. In: Ease (2008). https://doi.org/10.14236/ewic/EASE2008.8

  9. Mujtaba, S., et al.: Software Product Line Variability: A Systematic Mapping Study. School of Engineering, Blekinge Institue of Technology (2008)

    Google Scholar 

  10. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic mapping studies in software engineering: an update. Inf. Softw. Technol. 64, 1–18 (2015). https://doi.org/10.1016/j.infsof.2015.03.007

    Article  Google Scholar 

  11. Noruzi, A.: Google scholar: the new generation of citation indexes. Libri 55(4), 170–180 (2005). https://doi.org/10.1515/LIBR.2005.170

    Article  Google Scholar 

  12. Akiki, P.A., Bandara, A.K., Yu, Y.: Adaptive model-driven user interface development systems. ACM Comput. Surv. 47(1), 9 (2014). https://doi.org/10.1145/2597999

    Article  Google Scholar 

  13. Wolff, A., Forbrig, P.: Model-driven user interface development with the eclipse modeling project. In: 5 th International Workshop on Model Driven Development of Advanced User Interfaces (MDDAUI 2010) (2010)

    Google Scholar 

  14. Gwet, K.: Inter-rater reliability: dependency on trait prevalence and marginal homogeneity. Stat. Methods Inter-Rater Reliab. Assess. Series 2(1), 9 (2002)

    Google Scholar 

  15. Fleiss, J.L., Levin, B., Paik, M.C.: Statistical Methods for Rates and Proportions. John Wiley & Sons (2013)

    Google Scholar 

  16. ISO, I., IEC 9126–1: Software engineering-product quality-part 1: Quality model, vol. 21. International Organization for Standardization, Geneva, Switzerland (2001)

    Google Scholar 

  17. Wieringa, R., Maiden, N., Mead, N., Rolland, C.: Requirements engineering paper classification and evaluation criteria: a proposal and a discussion. Requirements Eng. 11(1), 102–107 (2006). https://doi.org/10.1007/s00766-005-0021-6

    Article  Google Scholar 

  18. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S.: Systematic literature reviews in software engineering – A systematic literature review. Inform. Softw. Technol. 51(1), 7–15 (2009). https://doi.org/10.1016/j.infsof.2008.09.009

    Article  Google Scholar 

  19. Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 80(4), 571–583 (2007). https://doi.org/10.1016/j.jss.2006.07.009

    Article  Google Scholar 

  20. Sousa, K., Mendonça, H., Vanderdonckt, J.: Towards method engineering of model-driven user interface development. In: Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS, vol. 4849, pp. 112–125. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77222-4_10

    Chapter  Google Scholar 

  21. Ding, X., Li, X.: Research of model-driven interactive automatic/semi-automatic form building. In: Smith, M.J., Salvendy, G. (eds.) Human Interface 2007. LNCS, vol. 4557, pp. 613–622. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73345-4_70

    Chapter  Google Scholar 

  22. Heinrich, M., et al.: MDA applied: a task-model driven tool chain for multimodal applications. In: Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS, vol. 4849, pp. 15–27. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77222-4_3

    Chapter  Google Scholar 

  23. Di Santo, G., Zimeo, E.: Reversing GUIs to XIML descriptions for the adaptation to heterogeneous devices. In: Proceedings of the 2007 ACM symposium on Applied computing. ACM (2007). https://doi.org/10.1145/1244002.1244314

  24. Witt, H., Nicolai, T., Kenn, H.: The WUI-Toolkit: A model-driven UI development framework for wearable user interfaces. In: 27th International Conference on Distributed Computing Systems Workshops. IEEE (2007). https://doi.org/10.1109/ICDCSW.2007.80

  25. Link, S., et al.: Focusing graphical user interfaces in model-driven software development. In: First International Conference on Advances in Computer-Human Interaction. IEEE (2008). https://doi.org/10.1109/ACHI.2008.16

  26. Adam, S., Breiner, K., Mukasa, K.S., Trapp, M.: Challenges to the model-driven generation of user interfaces at runtime for ambient intelligent systems. In: Mühlhäuser, M., Ferscha, A., Aitenbichler, E. (eds.) AmI 2007. CCIS, vol. 11, pp. 147–155. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85379-4_18

    Chapter  Google Scholar 

  27. García, J.G., Lemaigre, C., Vanderdonckt, J., Calleros, J.M.G.: Model-driven engineering of workflow user interfaces. In: Jaquero, V.L., Simarro, F.M., Masso, J.P.M., Vanderdonckt, J. (eds.) Computer-Aided Design of User Interfaces VI, pp. 9–22. Springer London, London (2009). https://doi.org/10.1007/978-1-84882-206-1_2

    Chapter  Google Scholar 

  28. Funk, M., Hoyer, P., Link, S.: Model-driven instrumentation of graphical user interfaces. In: 2009 Second International Conferences on Advances in Computer-Human Interactions (2009). IEEE. https://doi.org/10.1109/ACHI.2009.16

  29. Schramm, A., Preußner, A., Heinrich, M., Vogel, L.: Rapid UI development for enterprise applications: combining manual and model-driven techniques. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 271–285. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2_19

    Chapter  Google Scholar 

  30. Hennig, S., Van den Bergh, J., Luyten, K., Braune, A.: User driven evolution of user interface models – The FLEPR approach. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011. LNCS, vol. 6948, pp. 610–627. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23765-2_41

    Chapter  Google Scholar 

  31. López-Jaquero, V., Montero, F., González, P.: T:XML: a tool supporting user interface model transformation. In: Hussmann, H., Meixner, G., Zuehlke, D. (eds.) Model-Driven Development of Advanced User Interfaces, pp. 241–256. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-14562-9_12

    Chapter  Google Scholar 

  32. Cano, J., Vanderdonckt, J.: Towards Methodological Guidance for User Interface Development Life Cycle. In: 2nd Int. Workshop on User Interface Extensible Markup Language UsiXML’2011 (2011). http://hdl.handle.net/2078/118174

  33. Breiner, K., Bizik, K., Rauch, T., Seissler, M., Meixner, G., Diebold, P.: Automatic adaptation of user workflows within model-based user interface generation during runtime on the example of the SmartMote. In: Jacko, J.A. (ed.) HCI 2011. LNCS, vol. 6761, pp. 165–174. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21602-2_19

    Chapter  Google Scholar 

  34. Breiner, K., Meixner, G., Rombach, D., Seissler, M., Zühlke, D.: Efficient generation of ambient intelligent user interfaces. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011. LNCS (LNAI), vol. 6884, pp. 136–145. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23866-6_15

    Chapter  Google Scholar 

  35. Basin, D., et al.: Model-driven development of security-aware GUIs for data-centric applications. In: Aldini, A., Gorrieri, R. (eds.) FOSAD 2011. LNCS, vol. 6858, pp. 101–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23082-0_4

    Chapter  Google Scholar 

  36. Figueroa-Martinez, J., López-Jaquero, V., Vela, F.L.G., González, P.: Enriching UsiXML language to support awareness requirements. Sci. Comput. Programm. 78(11), 2259–2267 (2013). https://doi.org/10.1016/j.scico.2012.09.020

    Article  Google Scholar 

  37. Molina, A.I., Giraldo, W.J., Gallardo, J., Redondo, M.A., Ortega, M., García, G.: CIAT-GUI: A MDE-compliant environment for developing Graphical User Interfaces of information systems. Adv. Eng. Softw. 52, 10–29 (2012). https://doi.org/10.1016/j.advengsoft.2012.06.002

    Article  Google Scholar 

  38. Wu, H., Hua, Q.: A model-driven interactive system. In: Yang, Y., Ma, M., Liu, B. (eds.) ICICA 2013. CCIS, vol. 392, pp. 430–439. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53703-5_44

    Chapter  Google Scholar 

  39. Kis, F., Bogdan, C.: Lightweight low-level query-centric user interface modeling. In: 2013 46th Hawaii International Conference on System Sciences/ IEEE (2013). https://doi.org/10.1109/HICSS.2013.384

  40. Pleuss, A., Wollny, S., Botterweck, G.: Model-driven development and evolution of customized user interfaces. In: 5th ACM SIGCHI symposium on Engineering interactive computing systems. ACM (2013). https://doi.org/10.1145/2494603.2480298

  41. Nguyen, V.-T., Tran, M.-T., Duong, A.-D.: Picture-driven user interface development for applications on multi-platforms. In: Kurosu, M. (ed.) HCI 2014. LNCS, vol. 8510, pp. 350–360. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07233-3_33

    Chapter  Google Scholar 

  42. da Silva, L., et al.: Model-driven gui generation and navigation for android bis apps. In: 2nd International Conference on Model-Driven Engineering and Software Development (2014)

    Google Scholar 

  43. Basin, D., Clavel, M., Egea, M., de Dios, M.A.G., Dania, C.: A model-driven methodology for developing secure data-management applications. IEEE Trans. Softw. Eng. 40(4), 324–337 (2014). https://doi.org/10.1109/TSE.2013.2297116

    Article  Google Scholar 

  44. Zeferino, N.V., Vilain, P.: A model-driven approach for generating interfaces from user interaction diagrams. In: Proceedings of the 16th International Conference on Information Integration and Web-based Applications & Services. ACM (2014). https://doi.org/10.1145/2684200.2684326

  45. Acerbis, R., Bongio, A., Brambilla, M., Butti, S.: Model-driven development based on OMG’s IFML with WebRatio web and mobile platform. In: Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 605–608. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19890-3_39

    Chapter  Google Scholar 

  46. Seffah, A.: HCI design patterns as a building block in model-driven engineering. In: Patterns of HCI Design and HCI Design of Patterns. HIS, pp. 35–58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15687-3_3

    Chapter  Google Scholar 

  47. Roubi, S., Erramdani, M., Mbarki, S.: A model driven approach to generate graphical user interfaces for Rich Internet Applications using Interaction Flow Modeling Language. In: 15th International Conference on Intelligent Systems Design and Applications (ISDA). IEEE (2015) https://doi.org/10.1109/ISDA.2015.7489237

  48. Ruiz, J., Sedrakyan, G., Snoeck, M.: Generating User Interface from Conceptual, Presentation and User models with JMermaid in a learning approach. In: Proceedings of the XVI International Conference on Human Computer Interaction. ACM (2015). https://doi.org/10.1145/2829875.2829893

  49. Fischer, H., Yigitbas, E., Sauer, S.: Integrating Human-Centered and Model-Driven Methods in Agile UI Development. In: INTERACT 2015 Adjunct Proceedings: 15th IFIP TC. 13 International Conference on Human-Computer Interaction, University of Bamberg Press, Bamberg, Germany, 14–18 Sept 2015

    Google Scholar 

  50. Engel, J., Märtin, C., Forbrig, P.: A concerted model-driven and pattern-based framework for developing user interfaces of interactive ubiquitous applications. In: LMIS@ EICS (2015)

    Google Scholar 

  51. Khaddam, I., Mezhoudi, N., Vanderdonckt, J.: Adapt-first: A MDE transformation approach for supporting user interface adaptation. In: 2nd World Symposium on Web Applications and Networking (2015). https://doi.org/10.1109/WSWAN.2015.7209080

  52. Yigitbas, E., Sauer, S., Engels, G.: A model-based framework for multi-adaptive migratory user interfaces. In: Kurosu, M. (ed.) HCI 2015. LNCS, vol. 9170, pp. 563–572. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20916-6_52

    Chapter  Google Scholar 

  53. Frey, A., Sottet, J., Vagner, A.: A multi-viewpoint approach to support collaborative user interface generation. In: 19th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE (2015). https://doi.org/10.1109/CSCWD.2015.7230997

  54. Basso, F.P., Pillat, R.M., Frantz, F.R., Frantz, R.Z.: Combining MDE and scrum on the rapid prototyping of web information systems. Int. J. Web Eng. Technol. 10(3), 214 (2015). https://doi.org/10.1504/IJWET.2015.072347

    Article  Google Scholar 

  55. Laaz, N., Mbarki, S.: A model-driven approach for generating RIA interfaces using IFML and ontologies. In: 2016 4th IEEE International Colloquium on Information Science and Technology (CiSt). IEEE (2016). https://doi.org/10.1109/CIST.2016.7805005

  56. Yigitbas, E., Sauer, S.: Engineering context-adaptive UIs for task-continuous cross-channel applications. In: Bogdan, C., et al. (eds.) HCSE/HESSD -2016. LNCS, vol. 9856, pp. 281–300. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44902-9_18

    Chapter  Google Scholar 

  57. Bocanegra García, J.J., Mariscal, J.A.P., Carrillo Ramos, A.C.: Towards a domain-specific language to design adaptive software: the DMLAS approach. Ingenieria y Universidad 20(2), 335 (2016). https://doi.org/10.11144/Javeriana.iyu20-2.tdsl

    Article  Google Scholar 

  58. Thanh, N., Vanderdonckt, J., Seffah, A.: UIPLML: Pattern-based engineering of user interfaces of multi-platform systems. In: International Conference on Research Challenges in Information Science. IEEE (2016). https://doi.org/10.1109/RCIS.2016.7549348

  59. Fadhlillah, H.S., Adianto, D., Azurat, A., Sakinah, S.I.: Generating adaptable user interface in SPLE: using delta-oriented programming and interaction flow modeling language. In: Proceedings of the 22nd International Systems and Software Product Line Conference – vol. 2 (SPLC’18). Association for Computing Machinery, New York, NY, USA, pp. 52–55 (2018). https://doi.org/10.1145/3236405.3237199

  60. Rehman, S., et al.: Development of user interface for multi-platform applications using the model driven software engineering techniques. In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE (2018). https://doi.org/10.1109/IEMCON.2018.8615013

  61. Ostroff, J.S., Wang, C.-W.: Modelling and Testing Requirements via Executable Abstract State Machines. In: 2018 IEEE 8th International Model-Driven Requirements Engineering Workshop (MoDRE). IEEE (2018). https://doi.org/10.1109/MoDRE.2018.00007

  62. Bouraoui, A., Gharbi, I.: Model driven engineering of accessible and multi-platform graphical user interfaces by parameterized model transformations. Sci. Comput. Program. 172, 63–101 (2019). https://doi.org/10.1016/j.scico.2018.11.002

    Article  Google Scholar 

  63. Ben Ammar, L., Mahfoudhi, A.: An empirical evaluation of a usability measurement method in a model driven framework. In: Holzinger, A., Ziefle, M., Hitz, M., Debevc, M. (eds.) SouthCHI 2013. LNCS, vol. 7946, pp. 157–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39062-3_10

    Chapter  Google Scholar 

  64. Dimbisoa, W., et al.: Automatically generate a specific human computer interaction from an interface diagram model. In: 2018 4th International Conference on Computer and Technology Applications. IEEE (2018). https://doi.org/10.1109/CATA.2018.8398671

  65. Hussain, J., et al.: Model-based adaptive user interface based on context and user experience evaluation. J. Multimodal User Interfaces 12(1), 1–16 (2018). https://doi.org/10.1007/s12193-018-0258-2

    Article  Google Scholar 

  66. Parra, O., España, S., Panach, J.I., Pastor, O.: An empirical comparative evaluation of gestUI to include gesture-based interaction in user interfaces. Sci. Comput. Programm. 172, 232–263 (2019). https://doi.org/10.1016/j.scico.2018.12.001

    Article  Google Scholar 

  67. Daun, M., Weyer, T., Pohl, K.: Improving manual reviews in function-centered engineering of embedded systems using a dedicated review model. Softw. Syst. Model. 18(6), 3421–3459 (2019). https://doi.org/10.1007/s10270-019-00723-2

    Article  Google Scholar 

  68. Yigitbas, E., Anjorin, A., Jovanovikj, I., Kern, T., Sauer, S., Engels, G.: Usability evaluation of model-driven cross-device web user interfaces. In: Bogdan, C., Kuusinen, K., Lárusdóttir, M.K., Palanque, P., Winckler, M. (eds.) HCSE 2018. LNCS, vol. 11262, pp. 231–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05909-5_14

    Chapter  Google Scholar 

  69. Ziegler, D., Peissner, M.: Modelling of polymorphic user interfaces at the appropriate level of abstraction. In: Ahram, T.Z. (ed.) AHFE 2018. AISC, vol. 787, pp. 45–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94229-2_5

    Chapter  Google Scholar 

  70. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: USIXML: a language supporting multi-path development of user interfaces. In: Bastide, R., Palanque, P., Roth, J. (eds.) DSV-IS 2004. LNCS, vol. 3425, pp. 200–220. Springer, Heidelberg (2005). https://doi.org/10.1007/11431879_12

    Chapter  Google Scholar 

  71. Vanderdonckt, J.: A MDA-compliant environment for developing user interfaces of information systems. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 16–31. Springer, Heidelberg (2005). https://doi.org/10.1007/11431855_2

    Chapter  Google Scholar 

  72. Puerta, A., Micheletti, M., Mak, A.: The UI pilot: a model-based tool to guide early interface design. In: Proceedings of the 10th international conference on Intelligent user interfaces. ACM (2005). https://doi.org/10.1145/1040830.1040877

  73. Wolff, A., Forbrig, P.: Model based reengineering of user interfaces. In: MDDAUI (2005)

    Google Scholar 

  74. Trapp, M., Schmettow, M.: Consistency in use through model based user interface development. In: Workshop at CHI (2006)

    Google Scholar 

  75. Kavaldjian, S.: A model-driven approach to generating user interfaces. In: 6th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering (2007). https://doi.org/10.1145/1287624.1287721

  76. Abrahão, S., Iborra, E., Vanderdonckt, J.: Usability evaluation of user interfaces generated with a model-driven architecture tool. In: Law, E.-C., Hvannberg, E.T., Cockton, G. (eds.) Maturing Usability. HIS, pp. 3–32. Springer, London (2008). https://doi.org/10.1007/978-1-84628-941-5_1

    Chapter  Google Scholar 

  77. Sottet, J.-S., Calvary, G., Coutaz, J., Favre, J.-M.: A model-driven engineering approach for the usability of plastic user interfaces. In: Gulliksen, J., Harning, M.B., Palanque, P., van der Veer, G.C., Wesson, J. (eds.) DSV-IS/EHCI/HCSE -2007. LNCS, vol. 4940, pp. 140–157. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92698-6_9

    Chapter  Google Scholar 

  78. Feuerstack, S., et al.: Automated Usability Evaluation during Model-Based Interactive System Development. In: Forbrig, P., Paternò, F. (eds.) HCSE/TAMODIA -2008. LNCS, vol. 5247, pp. 134–141. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85992-5_12

    Chapter  Google Scholar 

  79. Aquino, N., Vanderdonckt, J., Valverde, F., Pastor, O.: Using profiles to support model transformations in the model-driven development of user interfaces. In: Jaquero, V.L., Simarro, F.M., Masso, J.P.M., Vanderdonckt, J. (eds.) Computer-Aided Design of User Interfaces VI, pp. 35–46. Springer London, London (2009). https://doi.org/10.1007/978-1-84882-206-1_4

    Chapter  Google Scholar 

  80. Sukaviriya, N., Mani, S., Sinha, V.: Reflection of a year long model-driven business and ui modeling development project. In: Gross, T., et al. (eds.) INTERACT 2009. LNCS, vol. 5727, pp. 749–762. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03658-3_80

    Chapter  Google Scholar 

  81. Sottet, J.-S., Calvary, G., Favre, J.-M., Coutaz, J.: Megamodeling and metamodel-driven engineering for plastic user interfaces: mega-ui. In: Seffah, A., Vanderdonckt, J., Desmarais, M.C. (eds.) Human-Centered Software Engineering: Software Engineering Models, Patterns and Architectures for HCI, pp. 173–200. Springer London, London (2009). https://doi.org/10.1007/978-1-84800-907-3_8

    Chapter  Google Scholar 

  82. Kavaldjian, S., et al.: Semi-automatic user interface generation considering pointing granularity. In: 2009 IEEE International Conference on Systems, Man and Cybernetics. IEEE (2009). https://doi.org/10.1109/ICSMC.2009.5346356

  83. Vanderdonckt, J., Simarro, F.M.: Generative pattern-based design of user interfaces. In: Proceedings of the 1st International Workshop on Pattern-Driven Engineering of Interactive Computing Systems. ACM (2010). https://doi.org/10.1145/1824749.1824753

  84. Aquino, N., Vanderdonckt, J., Pastor, O.: Transformation templates: adding flexibility to model-driven engineering of user interfaces. In: Proceedings of the 2010 ACM Symposium on Applied Computing. ACM (2010). https://doi.org/10.1145/1774088.1774340

  85. Raneburger, D.: Interactive model driven graphical user interface generation. In: Proceedings of the 2nd ACM SIGCHI symposium on Engineering interactive computing systems. ACM (2010). https://doi.org/10.1145/1822018.1822071

  86. Van den Bergh, J., Sahni, D., Coninx, K.: Task models for safe software evolution and adaptation. In: England, D., Palanque, P., Vanderdonckt, J., Wild, P.J. (eds.) TAMODIA 2009. LNCS, vol. 5963, pp. 72–77. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11797-8_6

    Chapter  Google Scholar 

  87. de_Almeida Monte-Mor, J., et al.: Applying MDA approach to create graphical user interfaces. In: 2011 Eighth International Conference on Information Technology: New Generations. IEEE (2011), https://doi.org/10.1109/ITNG.2011.206

  88. Raneburger, D., et al.: Automated WIMP-UI behavior generation: Parallelism and granularity of communication units. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics. IEEE (2011). https://doi.org/10.1109/ICSMC.2011.6084099.

  89. Mejía, A., et al.: Implementing adaptive interfaces: a user model for the development of usability in interactive systems. In: Proceedings of the CUBE International Information Technology Conference. ACM (2012). https://doi.org/10.1145/2381716.2381831

  90. Molina, A.I., Gallardo, J., Redondo, M.A., Ortega, M., Giraldo, W.J.: Metamodel-driven definition of a visual modeling language for specifying interactive groupware applications: An empirical study. J. Syst. Softw. 86(7), 1772–1789 (2013). https://doi.org/10.1016/j.jss.2012.07.049

    Article  Google Scholar 

  91. Van Hees, K., Engelen, J.: Equivalent representations of multimodal user interfaces. Univ. Access Inf. Soc. 12(4), 339–368 (2012). https://doi.org/10.1007/s10209-012-0282-z

    Article  Google Scholar 

  92. Raneburger, D., et al.: A case study in automated gui generation for multiple devices. In: 2013 Africon. IEEE (2013). https://doi.org/10.1109/AFRCON.2013.6757645

  93. Montero, F., López-Jaquero, V., González, P.: User-Centered Reverse Engineering. Technical Report. University of Castilla-La Mancha (2013)

    Google Scholar 

  94. Ammar, L.B., Trabelsi, A., Mahfoudhi, A.: Dealing with usability in model-driven development method. In: Hammoudi, S., Cordeiro, J., Maciaszek, L.A., Filipe, J. (eds.) ICEIS 2013. LNBIP, vol. 190, pp. 405–420. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09492-2_24

    Chapter  Google Scholar 

  95. Zappia, I., et al.: Model and framework for multimodal and adaptive user interfaces generation in the context of business processes development. PhD Thesis, Faculty of Engineering, Department of Information Engineering (2014)

    Google Scholar 

  96. da Costa, S., Neto, V., de Oliveira, J.: A user interface stereotype to build web portals. In: 9th Latin American Web Congress. IEEE (2014). https://doi.org/10.1109/LAWeb.2014.8

  97. Yigitbas, E., Mohrmann, B., Sauer, S.: Model-driven UI development integrating HCI patterns. LMIS@EICS 2015, 42–46 (2015)

    Google Scholar 

  98. Yigitbas, E., Sauer, S.: Customized UI Development Through Context-Sensitive GUI Patterns. In: Mensch und Computer 2016–Workshopband (2016)

    Google Scholar 

  99. Yigitbas, E., Stahl, H., Sauer, S., Engels, G.: Self-adaptive UIs: integrated model-driven development of UIs and their adaptations. In: Anjorin, A., Espinoza, H. (eds.) ECMFA 2017. LNCS, vol. 10376, pp. 126–141. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61482-3_8

    Chapter  Google Scholar 

  100. Hitz, M., Kessel, T., Pfisterer, D.: Automatic UI generation for aggregated linked data applications by using sharable application ontologies. In: Pires, L.F., Hammoudi, S., Selic, B. (eds.) MODELSWARD 2017. CCIS, vol. 880, pp. 328–353. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94764-8_14

    Chapter  Google Scholar 

  101. Ruiz, J., Serral Asensio, E., Snoeck, M.: A fully implemented didactic tool for the teaching of interactive software systems. In: 6th International Conference on Model-Driven Engineering and Software Development (2018). https://doi.org/10.5220/0006579600950105

  102. Jaouadi, I., Ben Djemaa, R., Ben-Abdallah, H.: A model-driven development approach for context-aware systems. Softw. Syst. Model. 17(4), 1169–1195 (2016). https://doi.org/10.1007/s10270-016-0550-0

    Article  Google Scholar 

  103. Ruíz, A., Giraldo, W.J., Geerts, D., Arciniegas, J.L.: A roadmap for user interface design of interactive systems: an approach based on a triad of patterns. In: Marcus, A., Wang, W. (eds.) DUXU 2018. LNCS, vol. 10918, pp. 223–240. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91797-9_16

    Chapter  Google Scholar 

  104. Gaouar, L., et al.: HCIDL: Human-computer interface description language for multi-target, multimodal, plastic user interfaces. Future Computing and Informatics Journal 3(1), 110–130 (2018). https://doi.org/10.1016/j.fcij.2018.02.001

    Article  Google Scholar 

  105. Yigitbas, E., Jovanovikj, I., Biermeier, K., Sauer, S., Engels, G.: Integrated model-driven development of self-adaptive user interfaces. Softw. Syst. Model. 19(5), 1057–1081 (2020). https://doi.org/10.1007/s10270-020-00777-7

    Article  Google Scholar 

  106. Tanaka, S., et al., Development Support of User Interfaces Adaptive to Use Environment, in ICSCA ‘19. 2019, ACM. p. 223–228. https://doi.org/10.1145/3316615.3316663

  107. Ruiz, J., Serral, E., Snoeck, M.: Technology Enhanced Support for Learning Interactive Software Systems. In: Hammoudi, S., Pires, L.F., Selic, B. (eds.) MODELSWARD 2018. CCIS, vol. 991, pp. 185–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11030-7_9

    Chapter  Google Scholar 

  108. Trætteberg, H., Krogstie, J.: Enhancing the Usability of BPM-Solutions by Combining Process and User-Interface Modelling. In: Stirna, J., Persson, A. (eds.) PoEM 2008. LNBIP, vol. 15, pp. 86–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89218-2_7

    Chapter  Google Scholar 

  109. Tietz, V., et al. Towards task-based development of enterprise mashups. in Proceedings of the 13th International Conference on Information Integration and Web-based Applications and Services. 2011. ACM. https://doi.org/10.1145/2095536.2095594

  110. Tesoriero, R., Bourimi, M., Karatas, F., Barth, T., Villanueva, P.G., Schwarte, P.: Model-Driven Privacy and Security in Multi-modal Social Media UIs. In: Atzmueller, M., Chin, A., Helic, D., Hotho, A. (eds.) MSM/MUSE -2011. LNCS (LNAI), vol. 7472, pp. 158–181. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33684-3_9

    Chapter  Google Scholar 

  111. Lachgar, M. and A. Abdali. Generating Android graphical user interfaces using an MDA approach. in 2014 Third IEEE International Colloquium in Information Science and Technology (CIST). 2014. IEEE. https://doi.org/10.1109/CIST.2014.7016598

  112. Agt-Rickauer, H., Kutsche, R.-D., Sack, H.: Automated Recommendation of Related Model Elements for Domain Models. In: Hammoudi, S., Pires, L.F., Selic, B. (eds.) MODELSWARD 2018. CCIS, vol. 991, pp. 134–158. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11030-7_7

    Chapter  Google Scholar 

  113. Faily, S.: A Conceptual Model for Usable Secure Requirements Engineering. In: Designing Usable and Secure Software with IRIS and CAIRIS, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75493-2_3

    Chapter  Google Scholar 

  114. Molina, J., et al. Towards virtualization of user interfaces based on UsiXML. in International conference on 3D Web technology. 2005. ACM. https://doi.org/10.1145/1050491.1050516

  115. Botterweck, G.: A Model-Driven Approach to the Engineering of Multiple User Interfaces. In: Kühne, T. (ed.) MODELS 2006. LNCS, vol. 4364, pp. 106–115. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69489-2_14

    Chapter  Google Scholar 

  116. Sousa, K., et al. User interface derivation from business processes: a model-driven approach for organizational engineering. in Proceedings of the 2008 ACM symposium on Applied computing. 2008. ACM. https://doi.org/10.1145/1363686.1363821

  117. Sousa, K., H. Mendonça, and J. Vanderdonckt, User Interface Development Life Cycle for Business-Driven Enterprise Applications, in Computer-Aided Design of User Interfaces VI. 2009, Springer. p. 23–34. https://doi.org/10.1007/978-1-84882-206-1_3

  118. López., et al. Designing user interface adaptation rules with T: XML. in 14th international conference on Intelligent user interfaces. 2009. https://doi.org/10.1145/1502650.1502705

  119. Wolff, A. and P. Forbrig, Deriving user interfaces from task models. Proc. of MDDAUI, 2012

    Google Scholar 

  120. García Frey, A., J.-S. Sottet, and A. Vagner. Ame: an adaptive modelling environment as a collaborative modelling tool. in ACM SIGCHI symposium on Engineering interactive computing systems. 2014. ACM. https://doi.org/10.1145/2607023.2611450

  121. Krainz, E., Feiner, J., Fruhmann, M.: Accelerated Development for Accessible Apps – Model Driven Development of Transportation Apps for Visually Impaired People. In: Bogdan, C., et al. (eds.) HCSE/HESSD -2016. LNCS, vol. 9856, pp. 374–381. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44902-9_25

    Chapter  Google Scholar 

  122. López-Jaquero, V., et al., UML2App: Towards the automatic generation of user interfaces for mobile devices, in XX International Conference on Human Computer Interaction (Interacción 2019). 2019, ACM: Spain. https://doi.org/10.1145/3335595.3335617

  123. Khaddam, I., H. Barakat, and J. Vanderdonckt. Enactment of User Interface Development Methods in Software Life Cycles. in RoCHI. 2016

    Google Scholar 

  124. Gallardo, J., et al.: A model-driven and task-oriented method for the development of collaborative systems. J. Netw. Comput. Appl. 36(6), 1551–1565 (2013). https://doi.org/10.1016/j.jnca.2013.03.016

    Article  Google Scholar 

  125. Valverde, F., I. Panach, and O. Pastor. An abstract interaction model for a MDA software production method. in Tutorials, posters, panels and industrial contributions at the 26th international conference on Conceptual modeling. 2007. Australian Computer Society, Inc.

    Google Scholar 

  126. Anjorin, A., et al. On the development of consistent user interfaces. in Conference Companion of the 2nd International Conference on Art, Science, and Engineering of Programming. 2018. ACM. https://doi.org/10.1145/3191697.3191716

Download references

Acknowledgement

This research is supported by a postdoc fellowship granted by the Institute of Computer Technologies and Information Security, Southern Federal University, project №. PD/20-02-KT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nemury Silega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mejias, J.C., Silega, N., Noguera, M., Rogozov, Y.I., Lapshin, V.S. (2022). Model-Driven User Interface Development: A Systematic Mapping. In: Agredo-Delgado, V., Ruiz, P.H., Correa-Madrigal, O. (eds) Human-Computer Interaction. HCI-COLLAB 2022. Communications in Computer and Information Science, vol 1707. Springer, Cham. https://doi.org/10.1007/978-3-031-24709-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24709-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24708-8

  • Online ISBN: 978-3-031-24709-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics