[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards a Social Artificial Intelligence

  • Chapter
  • First Online:
Human-Centered Artificial Intelligence (ACAI 2021)

Abstract

Artificial Intelligence can both empower individuals to face complex societal challenges and exacerbate problems and vulnerabilities, such as bias, inequalities, and polarization. For scientists, an open challenge is how to shape and regulate human-centered Artificial Intelligence ecosystems that help mitigate harms and foster beneficial outcomes oriented at the social good. In this tutorial, we discuss such an issue from two sides. First, we explore the network effects of Artificial Intelligence and their impact on society by investigating its role in social media, mobility, and economic scenarios. We further provide different strategies that can be used to model, characterize and mitigate the network effects of particular Artificial Intelligence driven individual behavior. Secondly, we promote the use of behavioral models as an addition to the data-based approach to get a further grip on emerging phenomena in society that depend on physical events for which no data are readily available. An example of this is tracking extremist behavior in order to prevent violent events. In the end, we illustrate some case studies in-depth and provide the appropriate tools to get familiar with these concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/GiulianoCornacchia/ACAI_SAI_Tutorial.

  2. 2.

    https://gpai.ai/.

References

  1. Afrin, T., Yodo, N.: A survey of road traffic congestion measures towards a sustainable and resilient transportation system. Sustainability 12(11), 4660 (2020)

    Article  Google Scholar 

  2. Pariser, E.: The Filter Bubble: What the Internet is Hiding From You. Penguin UK, Westminster (2011)

    Google Scholar 

  3. Sunstein, C.R.: Republic. com. Princeton University Press, Princeton (2001)

    Google Scholar 

  4. Rycroft, R.S.: The Economics of Inequality, Discrimination, Poverty, and Mobility. Routledge, Milton Park (2017)

    Book  Google Scholar 

  5. Schelling, T.C.: Models of segregation. Am. Econ. Rev. 59(2), 488–493 (1969)

    Google Scholar 

  6. Lorig, F., Vanhée, L., Dignum, F.: Agent-based social simulation for policy making (2022)

    Google Scholar 

  7. Erdős P., Rényi, A.: On random graphs. i. Publicationes Math. 6, 290–297 (1959)

    Google Scholar 

  8. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  10. Jean Tsang, S.: Cognitive discrepancy, dissonance, and selective exposure. Media Psychol. 22(3), 394–417 (2019)

    Article  Google Scholar 

  11. Jeong, M., Zo, H., Lee, C.H., Ceran, Y.: Feeling displeasure from online social media postings: a study using cognitive dissonance theory. Comput. Hum. Behav. 97, 231–240 (2019)

    Article  Google Scholar 

  12. Festinger, L.: A Theory of Cognitive Dissonance, vol. 2. Stanford University Press, Redwood City (1957)

    Book  Google Scholar 

  13. Borah, P., Thorson, K., Hwang, H.: Causes and consequences of selective exposure among political blog readers: the role of hostile media perception in motivated media use and expressive participation. J. Inf. Technol. Polit. 12(2), 186–199 (2015)

    Article  Google Scholar 

  14. Bozdag, E.: Bias in algorithmic filtering and personalization. Ethics Inf. Technol. 15(3), 209–227 (2013)

    Article  Google Scholar 

  15. Ge, Y., et al.: Understanding echo chambers in e-commerce recommender systems. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2261–2270 (2020)

    Google Scholar 

  16. Braess, D.: Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung 12, 258–268 (1968)

    MathSciNet  MATH  Google Scholar 

  17. Lera, S.C., Pentland, A., Sornette, D.: Prediction and prevention of disproportionally dominant agents in complex networks. Proc. Natl. Acad. Sci. 117(44), 27090–27095 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moore, M., Tambini, D.: Digital dominance: the power of Google. Facebook, and Apple. Oxford University Press, Amazon (2018)

    Google Scholar 

  19. Cook, P.J., Frank, R.H.: The winner-Take-all Society: Why the Few at the Top Get So Much More Than the Rest of Us. Random House, New York (2010)

    Google Scholar 

  20. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. Complex Syst. 3, 87–98 (2000)

    Article  Google Scholar 

  21. Sîrbu, A., Pedreschi, D., Giannotti, F., Kertész, J.: Algorithmic bias amplifies opinion fragmentation and polarization: a bounded confidence model. PLoS ONE 14(3), e0213246 (2019)

    Article  Google Scholar 

  22. Sun, S., Chen, J., Sun, J.: Congestion prediction based on GPS trajectory data. Int. J. Distrib. Sens. Netw. 15, 155014771984744 (2019)

    Article  Google Scholar 

  23. Vaqar, S.A., Basir, O.: Traffic pattern detection in a partially deployed vehicular ad hoc network of vehicles. IEEE Wireless Commun. 16(6), 40–46 (2009)

    Article  Google Scholar 

  24. Kruglanski, A.W., Gelfand, M.J., Bélanger, J.J., Sheveland, A., Hetiarachchi, M., Gunaratna, R.K.: The psychology of radicalization and deradicalization: How significance quest impacts violent extremism. Polit. Psychol. 35, 69–93 (2014)

    Article  Google Scholar 

  25. Wei, Y., Singh, L., Martin, S.: Identification of extremism on Twitter. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1251–1255. IEEE (2016)

    Google Scholar 

  26. Prabhu, A., et al.: Capitol (pat) riots: a comparative study of Twitter and parler. arXiv preprint arXiv:2101.06914 (2021)

  27. van den Hurk, M., Dignum, F.: Towards fundamental models of radicalization. In: ESSA (2019)

    Google Scholar 

  28. Dignum, F., et al.: Analysing the combined health, social and economic impacts of the corovanvirus pandemic using agent-based social simulation. Minds Mach. 30(2), 177–194 (2020). https://doi.org/10.1007/s11023-020-09527-6

    Article  Google Scholar 

  29. Pappalardo, L., Simini, F., Barlacchi, G., Pellungrini, R.: Scikit-mobility: a Python library for the analysis, generation and risk assessment of mobility data. arXiv preprint arXiv:1907.07062 (2019)

  30. Rossetti, G., Milli, L., Rinzivillo, S., Sîrbu, A., Pedreschi, D., Giannotti, F.: Ndlib: a python library to model and analyze diffusion processes over complex networks. Int. J. Data Sci. Anal. 5(1), 61–79 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Morini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pedreschi, D., Dignum, F., Morini, V., Pansanella, V., Cornacchia, G. (2023). Towards a Social Artificial Intelligence. In: Chetouani, M., Dignum, V., Lukowicz, P., Sierra, C. (eds) Human-Centered Artificial Intelligence. ACAI 2021. Lecture Notes in Computer Science(), vol 13500. Springer, Cham. https://doi.org/10.1007/978-3-031-24349-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24349-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24348-6

  • Online ISBN: 978-3-031-24349-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics