[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Human Following for Mobile Robots

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13455))

Included in the following conference series:

Abstract

Human following is an essential function in many robotic systems. Most of the existing human following algorithms are based on human tracking algorithms. However, in practical scenarios, the human subject might easily disappear due to occlusions and quick movements. In order to solve the problem of occlusion, this paper proposed a classification-based human following framework. After using a pre-trained MobileNetV2 model to detect the human subjects, the robot will automatically train a classification model to identify the target person. In the end, the robot is controlled by some rule-based motion commands to follow the target human. Experimental results on several practical scenarios have demonstrated the effectiveness of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Do Hoang, M., Yun, S.S., Choi, J.S.: The reliable recovery mechanism for person-following robot in case of missing target. In: 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 800–803. IEEE (2017)

    Google Scholar 

  2. Gupta, M., Kumar, S., Behera, L., Subramanian, V.K.: A novel vision-based tracking algorithm for a human-following mobile robot. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1415–1427 (2016)

    Article  Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  4. Hirai, N., Mizoguchi, H.: Visual tracking of human back and shoulder for person following robot. In: Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), vol. 1, pp. 527–532. IEEE (2003)

    Google Scholar 

  5. Hu, J.S., Wang, J.J., Ho, D.M.: Design of sensing system and anticipative behavior for human following of mobile robots. IEEE Trans. Industr. Electron. 61(4), 1916–1927 (2013)

    Article  Google Scholar 

  6. Kejriwal, N., Garg, S., Kumar, S.: Product counting using images with application to robot-based retail stock assessment. In: 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), pp. 1–6. IEEE (2015)

    Google Scholar 

  7. Nagumo, Y., Ohya, A.: Human following behavior of an autonomous mobile robot using light-emitting device. In: Proceedings 10th IEEE International Workshop on Robot and Human Interactive Communication. ROMAN 2001 (Cat. No. 01TH8591), pp. 225–230. IEEE (2001)

    Google Scholar 

  8. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  9. Tarmizi, A.I., Shukor, A.Z., Sobran, N.M.M., Jamaluddin, M.H.: Latest trend in person following robot control algorithm: a review. J. Telecommun. Electron. Comput. Engi. (JTEC) 9(3), 169–174 (2017)

    Google Scholar 

  10. Yoshimi, T., et al.: Development of a person following robot with vision based target detection. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5286–5291. IEEE (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, W., Dickenson, P., Cai, H., Li, B. (2022). Human Following for Mobile Robots. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13455. Springer, Cham. https://doi.org/10.1007/978-3-031-13844-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13844-7_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13843-0

  • Online ISBN: 978-3-031-13844-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics