Abstract
In several investigations of cancers, non-coding RNAs, especially lncRNAs (long non-coding RNAs) and miRNAs(microRNAs) have been proven that they are strongly relevant to diseases. For instance, neoplasms and non-small cell lung cancer are regulated by miRNA and lncRNA. However, it is complex that cancer could be co-regulated by multiple genes at the same time. Furthermore, different miRNAs and lncRNAs may also have interactions and regulations with others. The interactions among multiple genes still need to be interpreted. Traditional biology experiments are time-consumed and expensive. Increasing number of computational predictions of lncRNA-miRNA interactions have been seen as an alternative strategy to the biology methods for predict potential interactions. Considering that the complexity of molecular interactions, it should be more globally in identification underlying associations. We proposed a method using representation learning for attributed multiplex heterogeneous network. We conduct systematical evaluations for the model. The proposed method achieved ROC-AUC of 0.9180, PR-AUC of 0.8438, F1 scores of 0.7677. This method incorporated more biomolecular network information and provided more possibilities for discovering underlying bioinformatic associations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carninci, P., Hayashizaki, Y.: Noncoding RNA transcription beyond annotated genes. Curr. Opin. Genet. Dev. 17(2), 139–144 (2007)
Consortium, E.P.: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146), 799 (2007)
Kapranov, P., et al.: RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830), 1484–1488 (2007)
Fatica, A., Bozzoni, I.: Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15(1), 7–21 (2014)
Liu, J.: Control of protein synthesis and mRNA degradation by microRNAs. Curr. Opin. Cell Biol. 20(2), 214–221 (2008)
Scaria, V., et al.: Host-virus interaction: a new role for microRNAs. Retrovirology 3(1), 1–9 (2006)
Tsuchiya, S., Okuno, Y., Tsujimoto, G.: MicroRNA: biogenetic and functional mechanisms and involvements in cell differentiation and cancer. J. Pharmacol. Sci. 101(4), 267–270 (2006)
Cho, W.: OncomiRs: the discovery and progress of microRNAs in cancers. Mol. Cancer 6(1), 1–7 (2007)
Drakaki, A., Iliopoulos, D.: MicroRNA gene networks in oncogenesis. Curr. Genomics 10(1), 35–41 (2009)
Tzur, G., et al.: Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development. PLoS ONE 4(10), e7511 (2009)
Bussemakers, M.J., et al.: Dd3: a new prostate-specific gene, highly overexpressed in prostate cancer. Can. Res. 59(23), 5975–5979 (1999)
Spizzo, R., et al.: Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31(43), 4577–4587 (2012)
van Poppel, H., et al.: The relationship between prostate cancer gene 3 (PCA3) and prostate cancer significance. BJU Int. 109(3), 360–366 (2012)
Berteaux, N., et al.: H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J. Biol. Chem. 280(33), 29625–29636 (2005)
Calin, G.A., et al.: A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353(17), 1793–1801 (2005)
Iorio, M.V., et al.: MicroRNA gene expression deregulation in human breast cancer. Can. Res. 65(16), 7065–7070 (2005)
Yanaihara, N., et al.: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3), 189–198 (2006)
Ciafre, S., et al.: Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun. 334(4), 1351–1358 (2005)
Salmena, L., et al.: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3), 353–358 (2011)
Veneziano, D., Marceca, G.P., Di Bella, S., Nigita, G., Distefano, R., Croce, C.M.: Investigating miRNA–lncRNA interactions: computational tools and resources. In: Laganà, A. (ed.) MicroRNA Target Identification. MMB, vol. 1970, pp. 251–277. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-9207-2_14
Zhou, S., et al.: LncRNA-miRNA interaction prediction from the heterogeneous network through graph embedding ensemble learning. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE (2019)
Zhang, W., et al.: LncRNA-miRNA interaction prediction through sequence-derived linear neighborhood propagation method with information combination. BMC Genomics 20(11), 1–12 (2019)
Chen, G., et al.: LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 41(D1), D983–D986 (2012)
Miao, Y.-R., et al.: lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res. 46(D1), D276–D280 (2018)
Huang, Z., et al.: HMDD v3. 0: a database for experimentally supported human microRNA–disease associations. Nucleic Acids Res. 47(D1), D1013–D1017 (2019)
Chou, C.-H., et al.: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46(D1), D296–D302 (2018)
Cheng, L., et al.: LncRNA2Target v2. 0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res. 47(D1), D140–D144 (2019)
Piñero, J., et al.: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. gkw943 (2016)
Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1), D1074–D1082 (2018)
Szklarczyk, D., et al.: The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. gkw937 (2016)
Fang, S., et al.: NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 46(D1), D308–D314 (2018)
Cen, Y., et al.: Representation learning for attributed multiplex heterogeneous network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)
Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inf. Processing Syst. 30 (2017)
Dong, Y., Chawla, N.V., Swami. A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)
Mikolov, T., et al.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Huang, Y.-A., Chan, K.C., You, Z.-H.: Constructing prediction models from expression profiles for large scale lncRNA–miRNA interaction profiling. Bioinformatics 34(5), 812–819 (2018)
Wang, M.-N., et al.: GNMFLMI: graph regularized nonnegative matrix factorization for predicting LncRNA-MiRNA i
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, J., You, Z., Shang, X., Niu, R., Yun, Y. (2022). Identification of miRNA-lncRNA Underlying Interactions Through Representation for Multiplex Heterogeneous Network. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-13829-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13828-7
Online ISBN: 978-3-031-13829-4
eBook Packages: Computer ScienceComputer Science (R0)