[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Identification of miRNA-lncRNA Underlying Interactions Through Representation for Multiplex Heterogeneous Network

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1757 Accesses

Abstract

In several investigations of cancers, non-coding RNAs, especially lncRNAs (long non-coding RNAs) and miRNAs(microRNAs) have been proven that they are strongly relevant to diseases. For instance, neoplasms and non-small cell lung cancer are regulated by miRNA and lncRNA. However, it is complex that cancer could be co-regulated by multiple genes at the same time. Furthermore, different miRNAs and lncRNAs may also have interactions and regulations with others. The interactions among multiple genes still need to be interpreted. Traditional biology experiments are time-consumed and expensive. Increasing number of computational predictions of lncRNA-miRNA interactions have been seen as an alternative strategy to the biology methods for predict potential interactions. Considering that the complexity of molecular interactions, it should be more globally in identification underlying associations. We proposed a method using representation learning for attributed multiplex heterogeneous network. We conduct systematical evaluations for the model. The proposed method achieved ROC-AUC of 0.9180, PR-AUC of 0.8438, F1 scores of 0.7677. This method incorporated more biomolecular network information and provided more possibilities for discovering underlying bioinformatic associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carninci, P., Hayashizaki, Y.: Noncoding RNA transcription beyond annotated genes. Curr. Opin. Genet. Dev. 17(2), 139–144 (2007)

    Article  Google Scholar 

  2. Consortium, E.P.: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146), 799 (2007)

    Google Scholar 

  3. Kapranov, P., et al.: RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830), 1484–1488 (2007)

    Article  Google Scholar 

  4. Fatica, A., Bozzoni, I.: Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15(1), 7–21 (2014)

    Article  Google Scholar 

  5. Liu, J.: Control of protein synthesis and mRNA degradation by microRNAs. Curr. Opin. Cell Biol. 20(2), 214–221 (2008)

    Article  Google Scholar 

  6. Scaria, V., et al.: Host-virus interaction: a new role for microRNAs. Retrovirology 3(1), 1–9 (2006)

    Article  MathSciNet  Google Scholar 

  7. Tsuchiya, S., Okuno, Y., Tsujimoto, G.: MicroRNA: biogenetic and functional mechanisms and involvements in cell differentiation and cancer. J. Pharmacol. Sci. 101(4), 267–270 (2006)

    Article  Google Scholar 

  8. Cho, W.: OncomiRs: the discovery and progress of microRNAs in cancers. Mol. Cancer 6(1), 1–7 (2007)

    Article  Google Scholar 

  9. Drakaki, A., Iliopoulos, D.: MicroRNA gene networks in oncogenesis. Curr. Genomics 10(1), 35–41 (2009)

    Article  Google Scholar 

  10. Tzur, G., et al.: Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development. PLoS ONE 4(10), e7511 (2009)

    Article  Google Scholar 

  11. Bussemakers, M.J., et al.: Dd3: a new prostate-specific gene, highly overexpressed in prostate cancer. Can. Res. 59(23), 5975–5979 (1999)

    Google Scholar 

  12. Spizzo, R., et al.: Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31(43), 4577–4587 (2012)

    Article  Google Scholar 

  13. van Poppel, H., et al.: The relationship between prostate cancer gene 3 (PCA3) and prostate cancer significance. BJU Int. 109(3), 360–366 (2012)

    Article  Google Scholar 

  14. Berteaux, N., et al.: H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J. Biol. Chem. 280(33), 29625–29636 (2005)

    Article  Google Scholar 

  15. Calin, G.A., et al.: A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353(17), 1793–1801 (2005)

    Article  Google Scholar 

  16. Iorio, M.V., et al.: MicroRNA gene expression deregulation in human breast cancer. Can. Res. 65(16), 7065–7070 (2005)

    Article  Google Scholar 

  17. Yanaihara, N., et al.: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3), 189–198 (2006)

    Article  Google Scholar 

  18. Ciafre, S., et al.: Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun. 334(4), 1351–1358 (2005)

    Article  Google Scholar 

  19. Salmena, L., et al.: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3), 353–358 (2011)

    Article  Google Scholar 

  20. Veneziano, D., Marceca, G.P., Di Bella, S., Nigita, G., Distefano, R., Croce, C.M.: Investigating miRNA–lncRNA interactions: computational tools and resources. In: Laganà, A. (ed.) MicroRNA Target Identification. MMB, vol. 1970, pp. 251–277. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-9207-2_14

    Chapter  Google Scholar 

  21. Zhou, S., et al.: LncRNA-miRNA interaction prediction from the heterogeneous network through graph embedding ensemble learning. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE (2019)

    Google Scholar 

  22. Zhang, W., et al.: LncRNA-miRNA interaction prediction through sequence-derived linear neighborhood propagation method with information combination. BMC Genomics 20(11), 1–12 (2019)

    Google Scholar 

  23. Chen, G., et al.: LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 41(D1), D983–D986 (2012)

    Article  Google Scholar 

  24. Miao, Y.-R., et al.: lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res. 46(D1), D276–D280 (2018)

    Article  Google Scholar 

  25. Huang, Z., et al.: HMDD v3. 0: a database for experimentally supported human microRNA–disease associations. Nucleic Acids Res. 47(D1), D1013–D1017 (2019)

    Google Scholar 

  26. Chou, C.-H., et al.: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46(D1), D296–D302 (2018)

    Article  Google Scholar 

  27. Cheng, L., et al.: LncRNA2Target v2. 0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res. 47(D1), D140–D144 (2019)

    Google Scholar 

  28. Piñero, J., et al.: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. gkw943 (2016)

    Google Scholar 

  29. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1), D1074–D1082 (2018)

    Google Scholar 

  30. Szklarczyk, D., et al.: The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. gkw937 (2016)

    Google Scholar 

  31. Fang, S., et al.: NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 46(D1), D308–D314 (2018)

    Article  Google Scholar 

  32. Cen, Y., et al.: Representation learning for attributed multiplex heterogeneous network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  33. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inf. Processing Syst. 30 (2017)

    Google Scholar 

  34. Dong, Y., Chawla, N.V., Swami. A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)

    Google Scholar 

  35. Mikolov, T., et al.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  36. Huang, Y.-A., Chan, K.C., You, Z.-H.: Constructing prediction models from expression profiles for large scale lncRNA–miRNA interaction profiling. Bioinformatics 34(5), 812–819 (2018)

    Article  Google Scholar 

  37. Wang, M.-N., et al.: GNMFLMI: graph regularized nonnegative matrix factorization for predicting LncRNA-MiRNA i

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuhong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, J., You, Z., Shang, X., Niu, R., Yun, Y. (2022). Identification of miRNA-lncRNA Underlying Interactions Through Representation for Multiplex Heterogeneous Network. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics