[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Lung Nodules Segmentation with DeepHealth Toolkit

  • Conference paper
  • First Online:
Image Analysis and Processing. ICIAP 2022 Workshops (ICIAP 2022)

Abstract

The accurate and consistent border segmentation plays an important role in the tumor volume estimation and its treatment in the field of Medical Image Segmentation. Globally, Lung cancer is one of the leading causes of death and the early detection of lung nodules is essential for the early cancer diagnosis and survival rate of patients. The goal of this study was to demonstrate the feasibility of Deephealth toolkit including PyECVL and PyEDDL libraries to precisely segment lung nodules. Experiments for lung nodules segmentation has been carried out on UniToChest using PyECVL and PyEDDL, for data pre-processing as well as neural network training. The results depict accurate segmentation of lung nodules across a wide diameter range and better accuracy over a traditional detection approach. The datasets and the code used in this paper are publicly available as a baseline reference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/deephealthproject/UC4_pipeline.

References

  1. Aberle, D., et al.: Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365(5), 395–409 (2011). https://doi.org/10.1056/NEJMoa1102873

    Article  Google Scholar 

  2. Barbano, C.A., et al.: Unitopatho, a labeled histopathological dataset for colorectal polyps classification and adenoma dysplasia grading. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 76–80. IEEE (2021)

    Google Scholar 

  3. Cancilla, M., et al.: The deephealth toolkit: a unified framework to boost biomedical applications. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 9881–9888. IEEE (2021)

    Google Scholar 

  4. Chaudhry, H., et al.: Unitochest: a lung image dataset for segmentation of cancerous nodules on CT scans (2022). https://www.iciap2021.org/

  5. DeepHealth: Deep-learning and HPC to boost biomedical applications for health (2019). https://deephealth-project.eu/

  6. ecvl: Ecvl (2022). https://github.com/deephealthproject/ecvl

  7. eddl: Eddl (2022). https://github.com/deephealthproject/eddl

  8. Eisenhauer, E.A., et al.: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45(2), 228–247 (2009)

    Article  Google Scholar 

  9. Gava, U., et al.: Unitobrain (2021). 10.21227/x8ea-vh16, https://dx.doi.org/10.21227/x8ea-vh16

  10. Infante, M., Berghmans, T., Heuvelmans, M.A., Hillerdal, G., Oudkerk, M.: Slow-growing lung cancer as an emerging entity: from screening to clinical management. Eur. Respir. J. 42(6), 1706–1722 (2013)

    Article  Google Scholar 

  11. Knight, S.B., Crosbie, P.A., Balata, H., Chudziak, J., Hussell, T., Dive, C.: Progress and prospects of early detection in lung cancer. Open Biol. 7(9) (2017). https://doi.org/10.1098/rsob.170070

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  13. Liu, H., et al.: A cascaded dual-pathway residual network for lung nodule segmentation in CT images. Physica Med. 63, 112–121 (2019)

    Article  Google Scholar 

  14. MacMahon, H., et al.: Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the fleischner society. Radiology 237(2), 395–400 (2005)

    Article  Google Scholar 

  15. Marten, K., Auer, F., Schmidt, S., Kohl, G., Rummeny, E.J., Engelke, C.: Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria. Eur. Radiol. 16(4), 781–790 (2006)

    Article  Google Scholar 

  16. Oniga, D., et al.: Florea: applications of AI and HPC in the health domain. In: HPC, Big Data, and AI Convergence Towards Exascale: Challenge and Vision, p. 217 (2022)

    Google Scholar 

  17. Perlo, D., et al.: UniToChest (2022). https://doi.org/10.5281/zenodo.5797912

  18. Puderbach, M., Kauczor, H.U.: Can lung MR replace lung CT? Pediatr. Radiol. 38(S3), 439–451 (2008). https://doi.org/10.1007/s00247-008-0844-7

    Article  Google Scholar 

  19. pyecvl: Pyecvl (2022). https://github.com/deephealthproject/pyecvl

  20. Revel, M.P.: Avoiding overdiagnosis in lung cancer screening: the volume doubling time strategy. Eur. Respir. J. 42, 1459–1463 (2013)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2021. CA: Can. J. Clin. 71(1), 7–33 (2021). https://doi.org/10.3322/caac.21654

  23. National Lung Screening Trial Research Team: Results of initial low-dose computed tomographic screening for lung cancer. New Engl. J. Med. 368(21), 1980–1991 (2013)

    Google Scholar 

  24. Van Ginneken, B.: Computer-aided diagnosis in thoracic computed tomography. Imaging Dec. MRI 12(3), 11–22 (2008)

    Article  Google Scholar 

  25. Wu, J., Qian, T.: A survey of pulmonary nodule detection, segmentation and classification in computed tomography with deep learning techniques. J. Med. Artif. Intell. 2(8), 1–12 (2019). https://doi.org/10.21037/jmai.2019.04.01

    Article  Google Scholar 

  26. Zhao, Y.R., et al.: Comparison of three software systems for semi-automatic volumetry of pulmonary nodules on baseline and follow-up CT examinations. Acta Radiologica 55(6), 691–698 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825111, DeepHealth Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiza Ayesha Hoor Chaudhry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaudhry, H.A.H. et al. (2022). Lung Nodules Segmentation with DeepHealth Toolkit. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13321-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13320-6

  • Online ISBN: 978-3-031-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics