[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Auto-Encoder Guided Attention Based Network for Hyperspectral Recovery from Real RGB Images

  • Conference paper
  • First Online:
Pattern Recognition and Machine Intelligence (PReMI 2021)

Abstract

Hyperspectral reconstruction from RGB images have been proposed as an alternative approach to overcome the limited scope of conventional hyperspectral imaging. With the advancement in convolutional neural networks (CNNs), this approach has recently gained attention. However, most of the existing state-of-the-art frameworks focuses on hyperspectral reconstruction from clean RGB images i.e. with no noise and degradation. This limits the applicability of the current deep learning frameworks on real-world RGB images. Thus, in this paper we propose a novel deep learning framework for robust real RGB (with noise and degradation) for hyperspectral reconstruction. The proposed framework is motivated towards the extraction of noise-free features from real RGB images crucial for hyperspectral reconstruction. This is achieved with the use of a deep convolutional auto-encoder (DCAE) module and subsequent utilization of these noise-free features in an attention-based deep spectral back-projection network (DSBPN) for hyperspectral reconstruction. The proposed framework (DCAE-DSBPN) is trained in an end-to-end manner with joint optimization of denoising loss and hyperspectral reconstruction loss. Experimental results demonstrates that the proposed framework outperforms the existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez-Gila, A., Van De Weijer, J., Garrote, E.: Adversarial networks for spatial context-aware spectral image reconstruction from RGB. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 480–490 (2017)

    Google Scholar 

  2. Arad, B., Ben-Shahar, O.: Sparse recovery of hyperspectral signal from natural RGB images. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 19–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_2

    Chapter  Google Scholar 

  3. Arad, B., Ben-Shahar, O., Timofte, R.: NTIRE 2018 challenge on spectral reconstruction from RGB images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 929–938 (2018)

    Google Scholar 

  4. Arad, B., Timofte, R., Ben-Shahar, O., Lin, Y.T., Finlayson, G.D.: NTIRE 2020 challenge on spectral reconstruction from an RGB image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 446–447 (2020)

    Google Scholar 

  5. Can, Y.B., Timofte, R.: An efficient CNN for spectral reconstruction from RGB images. arXiv preprint arXiv:1804.04647 (2018)

  6. Chakrabarti, A., Zickler, T.: Statistics of real-world hyperspectral images. In: CVPR 2011, pp. 193–200. IEEE (2011)

    Google Scholar 

  7. Chen, S., Wang, G., Cui, X., Liu, Q.: Stepwise method based on wiener estimation for spectral reconstruction in spectroscopic raman imaging. Opt. Express 25(2), 1005–1018 (2017)

    Article  Google Scholar 

  8. Cui, J., et al.: Pet image denoising using unsupervised deep learning. Eur. J. Nucl. Med. Mol. Imaging 46(13), 2780–2789 (2019)

    Article  Google Scholar 

  9. Fubara, B.J., Sedky, M., Dyke, D.: RGB to spectral reconstruction via learned basis functions and weights. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 480–481 (2020)

    Google Scholar 

  10. Funamizu, H., Shimoma, S., Yuasa, T., Aizu, Y.: Effects of spatiotemporal averaging processes on the estimation of spectral reflectance in color digital holography using speckle illuminations. Appl. Opt. 53(30), 7072–7080 (2014)

    Article  Google Scholar 

  11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  12. Godard, C., Matzen, K., Uyttendaele, M.: Deep burst denoising. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  13. Goel, M., et al.: Hypercam: hyperspectral imaging for ubiquitous computing applications. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 145–156 (2015)

    Google Scholar 

  14. Goetz, A.F., Vane, G., Solomon, J.E., Rock, B.N.: Imaging spectrometry for earth remote sensing. Science 228(4704), 1147–1153 (1985)

    Google Scholar 

  15. Han, Y., Ye, J.C.: Framing U-Net via deep convolutional framelets: application to sparse-view CT. IEEE Trans. Med. Imaging 37(6), 1418–1429 (2018)

    Article  Google Scholar 

  16. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1664–1673 (2018)

    Google Scholar 

  17. Jifara, W., Jiang, F., Rho, S., Cheng, M., Liu, S.: Medical image denoising using convolutional neural network: a residual learning approach. J. Supercomput. 75(2), 704–718 (2019)

    Article  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980

  19. Koundinya, S., et al.: 2D-3D CNN based architectures for spectral reconstruction from RGB images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 844–851 (2018)

    Google Scholar 

  20. Li, J., Wu, C., Song, R., Li, Y., Liu, F.: Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 462–463 (2020)

    Google Scholar 

  21. Liu, P., Zhao, H.: Adversarial networks for scale feature-attention spectral image reconstruction from a single RGB. Sensors 20(8), 2426 (2020)

    Article  MathSciNet  Google Scholar 

  22. Nie, S., Gu, L., Zheng, Y., Lam, A., Ono, N., Sato, I.: Deeply learned filter response functions for hyperspectral reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4767–4776 (2018)

    Google Scholar 

  23. Oh, S.W., Brown, M.S., Pollefeys, M., Kim, S.J.: Do it yourself hyperspectral imaging with everyday digital cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2461–2469 (2016)

    Google Scholar 

  24. Peng, H., Chen, X., Zhao, J.: Residual pixel attention network for spectral reconstruction from RGB images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 486–487 (2020)

    Google Scholar 

  25. Shi, Z., Chen, C., Xiong, Z., Liu, D., Wu, F.: HSCNN+: advanced CNN-based hyperspectral recovery from RGB images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 939–947 (2018)

    Google Scholar 

  26. Takatani, T., Aoto, T., Mukaigawa, Y.: One-shot hyperspectral imaging using faced reflectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4039–4047 (2017)

    Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017). http://arxiv.org/abs/1706.03762

  28. Wang, W., Wang, J.: Double ghost convolution attention mechanism network: a framework for hyperspectral reconstruction of a single RGB image. Sensors 21(2), 666 (2021)

    Article  Google Scholar 

  29. Xiong, Z., Shi, Z., Li, H., Wang, L., Liu, D., Wu, F.: HSCNN: CNN-based hyperspectral image recovery from spectrally undersampled projections. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 518–525 (2017)

    Google Scholar 

  30. Yan, Y., Zhang, L., Li, J., Wei, W., Zhang, Y.: Accurate spectral super-resolution from single RGB image using multi-scale CNN. In: Lai, J.-H., et al. (eds.) PRCV 2018. LNCS, vol. 11257, pp. 206–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03335-4_18

    Chapter  Google Scholar 

  31. Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. 19(9), 2241–2253 (2010)

    Article  MathSciNet  Google Scholar 

  32. Zhao, J., et al.: Deep learning in hyperspectral image reconstruction from single RGB images-a case study on tomato quality parameters. Remote Sens. 12(19), 3258 (2020)

    Article  Google Scholar 

  33. Zhao, Y., Po, L.M., Yan, Q., Liu, W., Lin, T.: Hierarchical regression network for spectral reconstruction from RGB images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 422–423 (2020)

    Google Scholar 

  34. Zhu, Y., Li, B., Xu, X.: Spectral reconstruction and accuracy appraisal based on pseudo inverse method. In: 2012 Symposium on Photonics and Optoelectronics, pp. 1–3. IEEE (2012)

    Google Scholar 

  35. Zou, C., Wei, M.: Cluster-based deep convolutional networks for spectral reconstruction from RGB images. Neurocomputing 464, 342–351 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shukla, A. et al. (2024). Auto-Encoder Guided Attention Based Network for Hyperspectral Recovery from Real RGB Images. In: Ghosh, A., King, I., Bhattacharyya, M., Sankar Ray, S., K. Pal, S. (eds) Pattern Recognition and Machine Intelligence. PReMI 2021. Lecture Notes in Computer Science, vol 13102. Springer, Cham. https://doi.org/10.1007/978-3-031-12700-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12700-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12699-4

  • Online ISBN: 978-3-031-12700-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics