Abstract
Salient object detection has been explored extensively in low dimensional images like RGB, grayscale, etc., but have been explored very little in high dimensional images like Hyperspectral images (HSI) etc. In HSI, few studies have used low-level features to perform salient object detection. In this paper, we propose a high-level feature-based salient object detection algorithm. The manifold ranking is applied on the self-supervised CNN features learned by an unsupervised segmentation task. The training of the model continues until the clustering loss or saliency map converges to a defined error. We found out that the proposed algorithm performed better than state-of-the-art in terms of precision.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We implemented the SUDF [6] and got the precision of 55.4% for the same dataset.
References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Cao, Y., Zhang, J., Tian, Q., Zhuo, L., Zhou, Q.: Salient target detection in hyperspectral images using spectral saliency. In: 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), pp. 1086–1090. IEEE (2015)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)
Gao, Y., Yan, H., Zhang, L., Xi, R., Zhang, Y., Wei, W.: Matrix decomposition based salient object detection in hyperspectral imagery. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 574–577. IEEE (2017)
Huang, C., Xu, T., Zhang, Y., Pan, C., Hao, J., Li, X.: Salient object detection on hyperspectral images in wireless network using CNN and saliency optimization. Ad Hoc Netw. 112, 102369
İmamoğlu, N., Ding, G., Fang, Y., Kanezaki, A., Kouyama, T., Nakamura, R.: Salient object detection on hyperspectral images using features learned from unsupervised segmentation task. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2192–2196. IEEE (2019)
Imamoglu, N., et al.: Hyperspectral image dataset for benchmarking on salient object detection. In: 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–3. IEEE (2018)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)
Kanezaki, A.: Unsupervised image segmentation by backpropagation. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1543–1547. IEEE (2018)
Le Moan, S., Mansouri, A., Hardeberg, J.Y., Voisin, Y.: Saliency for spectral image analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(6), 2472–2479 (2013)
Liang, J., Zhou, J., Bai, X., Qian, Y.: Salient object detection in hyperspectral imagery. In: 2013 IEEE International Conference on Image Processing, pp. 2393–2397. IEEE (2013)
Liang, J., Zhou, J., Tong, L., Bai, X., Wang, B.: Material based salient object detection from hyperspectral images. Pattern Recogn. 76, 476–490 (2018)
Liu, X., Zhang, B., Gao, L., Chen, D.: A maximum noise fraction transform with improved noise estimation for hyperspectral images. Sci. China Ser. F Inf. Sci. 52(9), 1578–1587 (2009)
Ringnér, M.: What is principal component analysis? Nat. Biotechnol. 26(3), 303–304 (2008)
Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)
Shen, Z., Luo, X., Xue, R., Wang, H.: Look for saliency in hyperspectral images. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 2205–2208. IEEE (2019)
Tao, D., Cheng, J., Song, M., Lin, X.: Manifold ranking-based matrix factorization for saliency detection. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1122–1134 (2015)
Theodoridis, S., Koutroumbas, K., et al.: Pattern recognition. IEEE Trans. Neural Networks 19(2), 376 (2008)
Wu, X., Sahoo, D., Hoi, S.C.: Recent advances in deep learning for object detection. Neurocomputing 396, 39–64 (2020)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)
Zhang, L., Zhang, Y., Yan, H., Gao, Y., Wei, W.: Salient object detection in hyperspectral imagery using multi-scale spectral-spatial gradient. Neurocomputing 291, 215–225 (2018)
Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2814–2821 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 Springer Nature Switzerland AG
About this paper
Cite this paper
Lone, Z.A., Pais, A.R. (2024). Salient Object Detection in Hyperspectral Images Using Felzenswalb’s Segmentation Algorithm. In: Ghosh, A., King, I., Bhattacharyya, M., Sankar Ray, S., K. Pal, S. (eds) Pattern Recognition and Machine Intelligence. PReMI 2021. Lecture Notes in Computer Science, vol 13102. Springer, Cham. https://doi.org/10.1007/978-3-031-12700-7_46
Download citation
DOI: https://doi.org/10.1007/978-3-031-12700-7_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12699-4
Online ISBN: 978-3-031-12700-7
eBook Packages: Computer ScienceComputer Science (R0)