[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Salient Object Detection in Hyperspectral Images Using Felzenswalb’s Segmentation Algorithm

  • Conference paper
  • First Online:
Pattern Recognition and Machine Intelligence (PReMI 2021)

Abstract

Salient object detection has been explored extensively in low dimensional images like RGB, grayscale, etc., but have been explored very little in high dimensional images like Hyperspectral images (HSI) etc. In HSI, few studies have used low-level features to perform salient object detection. In this paper, we propose a high-level feature-based salient object detection algorithm. The manifold ranking is applied on the self-supervised CNN features learned by an unsupervised segmentation task. The training of the model continues until the clustering loss or saliency map converges to a defined error. We found out that the proposed algorithm performed better than state-of-the-art in terms of precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We implemented the SUDF [6] and got the precision of 55.4% for the same dataset.

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Cao, Y., Zhang, J., Tian, Q., Zhuo, L., Zhou, Q.: Salient target detection in hyperspectral images using spectral saliency. In: 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), pp. 1086–1090. IEEE (2015)

    Google Scholar 

  3. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  4. Gao, Y., Yan, H., Zhang, L., Xi, R., Zhang, Y., Wei, W.: Matrix decomposition based salient object detection in hyperspectral imagery. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 574–577. IEEE (2017)

    Google Scholar 

  5. Huang, C., Xu, T., Zhang, Y., Pan, C., Hao, J., Li, X.: Salient object detection on hyperspectral images in wireless network using CNN and saliency optimization. Ad Hoc Netw. 112, 102369

    Google Scholar 

  6. İmamoğlu, N., Ding, G., Fang, Y., Kanezaki, A., Kouyama, T., Nakamura, R.: Salient object detection on hyperspectral images using features learned from unsupervised segmentation task. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2192–2196. IEEE (2019)

    Google Scholar 

  7. Imamoglu, N., et al.: Hyperspectral image dataset for benchmarking on salient object detection. In: 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–3. IEEE (2018)

    Google Scholar 

  8. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  9. Kanezaki, A.: Unsupervised image segmentation by backpropagation. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1543–1547. IEEE (2018)

    Google Scholar 

  10. Le Moan, S., Mansouri, A., Hardeberg, J.Y., Voisin, Y.: Saliency for spectral image analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(6), 2472–2479 (2013)

    Article  Google Scholar 

  11. Liang, J., Zhou, J., Bai, X., Qian, Y.: Salient object detection in hyperspectral imagery. In: 2013 IEEE International Conference on Image Processing, pp. 2393–2397. IEEE (2013)

    Google Scholar 

  12. Liang, J., Zhou, J., Tong, L., Bai, X., Wang, B.: Material based salient object detection from hyperspectral images. Pattern Recogn. 76, 476–490 (2018)

    Article  Google Scholar 

  13. Liu, X., Zhang, B., Gao, L., Chen, D.: A maximum noise fraction transform with improved noise estimation for hyperspectral images. Sci. China Ser. F Inf. Sci. 52(9), 1578–1587 (2009)

    Article  MathSciNet  Google Scholar 

  14. Ringnér, M.: What is principal component analysis? Nat. Biotechnol. 26(3), 303–304 (2008)

    Article  Google Scholar 

  15. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  16. Shen, Z., Luo, X., Xue, R., Wang, H.: Look for saliency in hyperspectral images. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 2205–2208. IEEE (2019)

    Google Scholar 

  17. Tao, D., Cheng, J., Song, M., Lin, X.: Manifold ranking-based matrix factorization for saliency detection. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1122–1134 (2015)

    Article  MathSciNet  Google Scholar 

  18. Theodoridis, S., Koutroumbas, K., et al.: Pattern recognition. IEEE Trans. Neural Networks 19(2), 376 (2008)

    Google Scholar 

  19. Wu, X., Sahoo, D., Hoi, S.C.: Recent advances in deep learning for object detection. Neurocomputing 396, 39–64 (2020)

    Article  Google Scholar 

  20. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)

    Google Scholar 

  21. Zhang, L., Zhang, Y., Yan, H., Gao, Y., Wei, W.: Salient object detection in hyperspectral imagery using multi-scale spectral-spatial gradient. Neurocomputing 291, 215–225 (2018)

    Article  Google Scholar 

  22. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2814–2821 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubair Ahmad Lone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lone, Z.A., Pais, A.R. (2024). Salient Object Detection in Hyperspectral Images Using Felzenswalb’s Segmentation Algorithm. In: Ghosh, A., King, I., Bhattacharyya, M., Sankar Ray, S., K. Pal, S. (eds) Pattern Recognition and Machine Intelligence. PReMI 2021. Lecture Notes in Computer Science, vol 13102. Springer, Cham. https://doi.org/10.1007/978-3-031-12700-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12700-7_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12699-4

  • Online ISBN: 978-3-031-12700-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics