[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Deep Learning on X-ray Orthogonal Coronary Angiograms for Quantitative Coronary Analysis

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2022)

Abstract

Coronary Artery Disease is developed when the blood vessels are narrowed, hindering the blood flow into the heart. An accurate assessment of stenosis and lesions is key for the success of Percutaneous Coronary Intervention, the standard procedure for the treatment of this pathology, which consists in the implantation of a stent in the narrowed part of the artery, allowing the correct blood flow. This is the aim of Quantitative Coronary Analysis (QCA), namely the measurement of the arteries diameter in the angiographies. Therefore, the automatic analysis of the QCA from angiograms is of interest for the clinical practice, supporting the decision making, risk assessment, and stent placement. This work proposes a set of tools required for the computation of the QCA, which include the application of deep learning and image processing techniques to angiograms for the automatic identification of contrast frames and the measurement of the diameter along the artery. The first stage of the work addresses the segmentation of the coronary tree, using a U-Net model trained with a self-built dataset, whose annotations have been semi-automatically obtained using edge-detection filters. This model is used for different applications, including the automatic identification of contrast frames, suitable for the QCA study, and the extraction of the vessels centerlines and the measurement of the diameter, useful for the analysis of possible lesions. Results of this process, obtained for a set of sequences captured from several patients are provided, demonstrating the validity of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (2015). http://tensorflow.org/, software available from tensorflow.org

  2. Bovik, A.C., Huang, T.S., Munson, D.C.: The effect of median filtering on edge estimation and detection. IEEE Trans. Patt. Anal. Mach. Intell. PAMI-9(2), 181–194 (1987). https://doi.org/10.1109/TPAMI.1987.4767894

  3. Busto, L., et al.: Automatic identification of bioprostheses on X-ray angiographic sequences of transcatheter aortic valve implantation procedures using deep learning. Diagnostics 12(2) (2022). https://doi.org/10.3390/diagnostics12020334, https://www.mdpi.com/2075-4418/12/2/334

  4. Cervantes-Sanchez, F., Cruz-Aceves, I., Hernandez-Aguirre, A., Hernandez-Gonzalez, M.A., Solorio-Meza, S.E.: Automatic segmentation of coronary arteries in x-ray angiograms using multiscale analysis and artificial neural networks. Appl. Sci. 9(24) (2019). https://www.mdpi.com/2076-3417/9/24/5507

  5. Chollet, F., et al.: Keras. https://keras.io (2015)

  6. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

    Chapter  Google Scholar 

  7. Gupta, S., Gupta, A.: Dealing with noise problem in machine learning data-sets: a systematic review. Proc. Comput. Sci. 161, 466–474 (2019). https://doi.org/10.1016/j.procs.2019.11.146, https://www.sciencedirect.com/science/article/pii/S1877050919318575, the Fifth Information Systems International Conference, Surabaya, Indonesia, 23–24 July 2019

  8. Kern, M., Samady, H.: Current concepts of integrated coronary physiology in the catheterization laboratory. J. Am. Coll. Cardiol. 55, 173–185 (2010)

    Article  Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). http://arxiv.org/abs/1412.6980, cite arxiv:1412.6980 Comment: Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego (2015)

  10. Mendis, S., Puska, P., Norrving, B.E., Organization, W.H., et al.: Global atlas on cardiovascular disease prevention and control. World Health Organization (2011)

    Google Scholar 

  11. Stone, P.H., et al.: Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics. Prediction study. Circulation 126, 172–181 (2012). https://doi.org/10.1161/CIRCULATIONAHA.112.096438

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, May 2015

    Google Scholar 

  13. Sianos, G., et al.: The syntax score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention J. EuroPCR Collab. Working Group Intervent. Cardiol. Eur. Soc. Cardiol. 1(2), 219–227 (2005)

    Google Scholar 

  14. Stone, P.H.E.A.: Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the prediction study. Circulation 126, 172–181 (2012)

    Google Scholar 

  15. Timmis, A., et al.: European society of cardiology: cardiovascular disease statistics 2019. Eur. Heart J. 41(1), 12–85 (2019). https://doi.org/10.1093/eurheartj/ehz859

  16. Tonino, P.A., et al.: Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. New England J. Med. 360(3), 213–224 (2009)

    Google Scholar 

  17. Topol, E.J., Teirstein, P.: Textbook of Interventional Cardiology, 8th Edition. Qualitative and Quantitative Coronary Angiography. Elsevier, ISBN: 9780323568142 (2019)

    Google Scholar 

  18. Tu, S., et al.: Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC: Cardiovasc. Interv. 7(7), 768–777 (2014). https://doi.org/10.1016/j.jcin.2014.03.004, https://www.sciencedirect.com/science/article/pii/S1936879814007912

  19. van der Walt, S., et al.: The scikit-image contributors: scikit-image: image processing in Python. PeerJ 2, e453 (2014). https://doi.org/10.7717/peerj.453

  20. Yang, S., et al.: Deep learning segmentation of major vessels in X-ray coronary angiography. Sci. Rep. 9(1), 1–11 (2019)

    Google Scholar 

  21. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Busto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Busto, L., González-Nóvoa, J.A., Juan-Salvadores, P., Jiménez, V., Íñiguez, A., Veiga, C. (2022). Using Deep Learning on X-ray Orthogonal Coronary Angiograms for Quantitative Coronary Analysis. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12053-4_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12052-7

  • Online ISBN: 978-3-031-12053-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics