[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Ultrasonography Uterus and Fetus Segmentation with Constrained Spatial-Temporal Memory FCN

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13413))

Included in the following conference series:

  • 2634 Accesses

Abstract

Automatic segmentation of uterus and fetus from 3D fetal ultrasound images remains a challenging problem due to multiple issues of fetal ultrasound, e.g., the relatively low image quality, intensity variations. In this work, we present a novel framework for the joint segmentation of uterus and fetus. It consists of two main components: a task-specific fully convolutional neural network (FCN) and a bidirectional convolutional LSTM (BiCLSTM). Our framework is inspired by a simple observation: the segmentation task can be decomposed into multiple easier-to-solve subproblems. More specifically, the encoder of the FCN extracts object-relevant features from the ultrasound slices. The BiCLSTM layer is responsible for modeling the inter-slice correlations. The final two branches of the FCN decoder produce the uterus and fetus predictions. In this way, the burden of the whole problem is evenly distributed among different parts of our network, thereby maximally exploiting the capacity of our network. Furthermore, we propose a spatially constrained loss to restrict the spatial positions of the segmented uterus and fetus to boost the performance. Quantitative results demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We assume zero biases in Eq. (1)–(6) for simplicity.

References

  1. Alzubaidi, M., et al.: Towards deep observation: a systematic survey on artificial intelligence techniques to monitor fetus via ultrasound images. arXiv preprint arXiv:2201.07935 (2022)

  2. Anquez, J., Angelini, E.D., Grangé, G., Bloch, I.: Automatic segmentation of antenatal 3-d ultrasound images. IEEE Trans. Biomed. Eng. 60(5), 1388–1400 (2013)

    Article  Google Scholar 

  3. Chen, J., Yang, L., Zhang, Y., Alber, M., Chen, D.Z.: Combining fully convolutional and recurrent neural networks for 3d biomedical image segmentation. In: Advances in Neural Information Processing Systems, pp. 3036–3044 (2016)

    Google Scholar 

  4. Fiorentino, M.C., Villani, F.P., Di Cosmo, M., Frontoni, E., Moccia, S.: A review on deep-learning algorithms for fetal ultrasound-image analysis. arXiv preprint arXiv:2201.12260 (2022)

  5. Gustavo, C., Bogdan, G., Sara, G., Dorin, C.: Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Trans. Med. Imaging 27(9), 1342–1355 (2008)

    Article  Google Scholar 

  6. Hesse, L.S., et al.: Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning. Neuroimage 254, 119117 (2022)

    Article  Google Scholar 

  7. Kiserud, T., et al.: The world health organization fetal growth charts: a multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLoS Med. 14(1), e1002220 (2017)

    Article  Google Scholar 

  8. Kong, B., Sun, S., Wang, X., Song, Q., Zhang, S.: Invasive cancer detection utilizing compressed convolutional neural network and transfer learning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 156–164. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_18

    Chapter  Google Scholar 

  9. Kong, B., Wang, X., Li, Z., Song, Q., Zhang, S.: Cancer metastasis detection via spatially structured deep network. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 236–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_19

    Chapter  Google Scholar 

  10. Lee, W., Deter, R., Sangi-Haghpeykar, H., Yeo, L., Romero, R.: Prospective validation of fetal weight estimation using fractional limb volume. Ultrasound Obstet. Gynecol. 41(2), 198–203 (2013)

    Article  Google Scholar 

  11. Li, J., Cao, L., Ge, Y., Cheng, W., Bowen, M., Wei, G.: Multi-task deep convolutional neural network for the segmentation of type b aortic dissection. arXiv preprint arXiv:1806.09860 (2018)

  12. Looney, P., et al.: Fully automated, real-time 3D ultrasound segmentation to estimate first trimester placental volume using deep learning. JCI Insight 3(11), e120178 (2018)

    Google Scholar 

  13. Meengeonthong, D., Luewan, S., Sirichotiyakul, S., Tongsong, T.: Reference ranges of placental volume measured by virtual organ computer-aided analysis between 10 and 14 weeks of gestation. J. Clin. Ultrasound 45(4), 185–191 (2017)

    Article  Google Scholar 

  14. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Rueckert, D.: Attention u-net: Learning where to look for the pancreas. In: Medical Imaging with Deep Learning (2018)

    Google Scholar 

  15. Pătrăucean, V., Handa, A., Cipolla, R.: Spatio-temporal video autoencoder with differentiable memory. In: International Conference on Learning Representations (ICLR) Workshop (2016)

    Google Scholar 

  16. Peters, R., et al.: Virtual segmentation of three-dimensional ultrasound images of morphological structures of an ex vivo ectopic pregnancy inside a fallopian tube. J. Clin. Ultrasound 50, 535–539 (2022)

    Article  Google Scholar 

  17. Prieto, J.C., et al.: An automated framework for image classification and segmentation of fetal ultrasound images for gestational age estimation. In: Medical Imaging 2021: Image Processing. vol. 11596, p. 115961N. International Society for Optics and Photonics (2021)

    Google Scholar 

  18. Shi, X., Chen, Z., Hao, W., Yeung, D.Y., Wong, W., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: International Conference on Neural Information Processing Systems (2015)

    Google Scholar 

  19. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: International Joint Conference on Natural Language Processing. vol. 1, pp. 1556–1566 (2015)

    Google Scholar 

  20. Yang, X., et al.: Towards automated semantic segmentation in prenatal volumetric ultrasound. IEEE Trans. Med. Imaging 38(1), 180–193 (2019)

    Article  Google Scholar 

  21. Yaqub, M., Javaid, M.K., Cooper, C., Noble, J.A.: Investigation of the role of feature selection and weighted voting in random forests for 3-D volumetric segmentation. IEEE Trans. Med. Imaging 33(2), 258–271 (2014)

    Article  Google Scholar 

  22. Zeng, Y., Tsui, P.H., Wu, W., Zhou, Z., Wu, S.: Fetal ultrasound image segmentation for automatic head circumference biometry using deeply supervised attention-gated v-net. J. Digit. Imaging 34(1), 134–148 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Shenzhen Science and Technology Program (Grant No. KQTD2016112809330877).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Wang or Youbing Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kong, B. et al. (2022). Ultrasonography Uterus and Fetus Segmentation with Constrained Spatial-Temporal Memory FCN. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12053-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12052-7

  • Online ISBN: 978-3-031-12053-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics