[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Depth Estimation Using Sparse Depth and Transformer

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1568))

Included in the following conference series:

Abstract

Depth prediction from single image is a challenging task due to the intra scale ambiguity and unavailability of prior information. The prediction of an unambiguous depth from single RGB image is very important aspect for computer vision applications. In this paper, an end-to-end sparse-to-dense network using transformers is proposed for depth estimation. The proposed network processes single images along with the additional sparse depth samples which have been generated for depth estimation. The additional sparse depth sample are acquired either with a low-resolution depth sensor or calculated by visual simultaneous localization. Here, we have proposed a model that utilises both sparse samples and transformers and along with a encoder-decoder structure that helps us in giving great depth results that are comparable to other state-of-the-art results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  2. Chen, J., et al.: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.13645 (2021)

  3. Soleymani, A.A.M.-M., Deep Learning: Transformer Networks (2019)

    Google Scholar 

  4. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: 2018 IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  5. Hambarde, P., Murala, S.: S2DNet: depth estimation from single image and sparse samples. IEEE Trans. Comput. Imaging 6, 806–817 (2020)

    Google Scholar 

  6. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  7. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. arXiv preprint arXiv:2012.15840 (2020)

  8. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32, 1231–1237 (2013)

    Google Scholar 

  9. Koch, T., Liebel, L., Fraundorfer, F., Körner, M.: Evaluation of CNN-based single-image depth estimation methods. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 331–348. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_25

    Chapter  Google Scholar 

  10. Roy, A., Todorovic, S.: Monocular depth estimation using neural regression forest. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  11. Wang, W., Chen, C., Ding, M., Li, J., Yu, H., Zha, S.: TransBTS: multimodal brain tumor segmentation using transformer. arXiv preprint arXiv:2103.04430 (2021)

  12. Han, K., et al.: A survey on visual transformer. arXiv preprint arXiv:2012.12556 (2020)

  13. Karimi, D., Vasylechko, S., Gholipour, A.: Convolution-free medical image segmentation using transformers. arXiv preprint arXiv:2102.13645 (2021)

  14. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  15. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  16. Yang, G., Tang, H., Ding, M., Sebe, N., Ricci, E.: Transformers solve the limited receptive field for monocular depth prediction. arXiv preprint arXiv:2103.12091 (2021)

  17. Phutke, S.S., Murala, S.: Diverse receptive field based adversarial concurrent encoder network for image inpainting. IEEE Signal Process. Lett. 28, 1873–1877 (2021)

    Google Scholar 

  18. Mehta, N., Murala, S.: MSAR-Net: multi-scale attention based light-weight image super-resolution. Pattern Recognit. Lett. 151, 215–221 (2021)

    Google Scholar 

  19. Patil, P.W., et al.: An unified recurrent video object segmentation framework for various surveillance environments. IEEE Trans. Image Process. 30, 7889–7902 (2021)

    Google Scholar 

  20. Dudhane, A., Hambarde, P., Patil, P., Murala, S.: Deep underwater image restoration and beyond. IEEE Signal Process. Lett. 27, 675–679 (2020)

    Google Scholar 

  21. Dudhane, A., Biradar, K.M., Patil, P.W., Hambarde, P., Murala, S.: Varicolored image de-hazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4564–4573 (2020)

    Google Scholar 

  22. Hambarde, P., Dudhane, A., Murala, S.: Single image depth estimation using deep adversarial training. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 989–993. IEEE (2019)

    Google Scholar 

  23. Hambarde, P., Dudhane, A., Patil, P.W., Murala, S., Dhall, A.: Depth estimation from single image and semantic prior. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 1441–1445. IEEE (2020)

    Google Scholar 

  24. Patil, P.W., Biradar, K.M., Dudhane, A., Murala, S.: An end-to-end edge aggregation network for moving object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8149–8158 (2020)

    Google Scholar 

  25. Patil, P.W., Dudhane, A., Chaudhary, S., Murala, S.: Multi-frame based adversarial learning approach for video surveillance. Pattern Recognit. 122, 108350 (2022)

    Google Scholar 

  26. Hambarde, P., Murala, S., Dhall, A.: UW-GAN: single image DepthEstimation and image enhancement for underwater images. IEEE Trans. Instrum. Meas. 70, 1–12(2021)

    Google Scholar 

  27. Hambarde, P., Talbar, S.N., Sable, N., Mahajan, A., Chavan, S.S., Thakur, M.: Radiomics for peripheral zone and intra-prostatic urethra segmentation in MR imaging. Biomed. Signal Process. Control 51, 19–29 (2019)

    Article  Google Scholar 

  28. Hambarde, P., Talbar, S., Mahajan, A., Chavan, S., Thakur, M., Sable, N.: Prostate lesion segmentation in MR images using radiomics based deeply supervised U-Net. Biocybern. Biomed. Eng. 40(4), 1421–1435 (2020)

    Article  Google Scholar 

  29. Bhagat, S., Kokare, M., Haswani, V., Hambarde, P., Kamble, R.: WheatNet-lite: a novel light weight network for wheat head detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1332–1341 (2021)

    Google Scholar 

  30. Alaspure, P., Hambarde, P., Dudhane, A., Murala, S.: DarkGAN: night image enhancement using generative adversarial networks. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds.) CVIP 2020. CCIS, vol. 1376, pp. 293–302. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1086-8_26

    Chapter  Google Scholar 

  31. Bhagat, S., Kokare, M., Haswani, V., Hambarde, P., Kamble, R.: Eff-UNet++: a novel architecture for plant leaf segmentation and counting. Ecol. Inform. 68, 101583 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praful Hambarde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malik, R., Hambarde, P., Murala, S. (2022). Depth Estimation Using Sparse Depth and Transformer. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11349-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11348-2

  • Online ISBN: 978-3-031-11349-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics