[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Post-harvest Handling of Mangoes: An Integrated Solution Using Machine Learning Approach

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1568))

Included in the following conference series:

Abstract

In this paper, different steps involved in harvesting and postharvest handling of mangoes are detailed and the possibilities of exploring Artificial Intelligence based solutions for each step are highlighted. A schematic diagram of overall post-harvesting is given. Various suitable methods of classical machine learning such as feature extraction methods, feature reduction methods, and classifiers are presented. Problems of classifying mangoes into mature, non- mature and matured class further into ripened and under-ripened are addressed with a proposal of machine learning approaches. Nevertheless, a hierarchical multi-classifiers fusion approach is designed for classification of ripened mangoes into perfect ripened, over ripened, over ripened with black spots on skin and without black spots on skin. Moreover, method of selecting the best wavelengths of NIR spectroscopy towards proposal of non-destructive method of finding internal defects in mangoes is also introduced. In addition, the most difficult issue of classifying ripened mangoes into naturally ripened and artificially ripened mangoes is also attempted, and a suitable classifier is presented. For each problem being addressed using classical machine learning methods, the corresponding counterparts from deep learning architectures are also highlighted. Results of extensive experimentation conducted to demonstrate the success of our approaches are presented on reasonably sized datasets of mango images created during the course of our research. A description on datasets along with difficulties faced while creating datasets are detailed. A comparative study on different approaches including deep learning based approaches is presented. Scope for future research in the similar directions is also explored. Overall, this paper is an attempt towards an integrated solution for postharvest handling of mangoes especially for automation of sorting and grading processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Raghavendra, A., Guru, D.S., Rao, M.K.: An automatic predictive model for sorting of artificially and naturally ripened mangoes. In: Bhateja, V., Peng, S.-L., Satapathy, S.C., Zhang, Y.-D. (eds.) Evolution in Computational Intelligence. AISC, vol. 1176, pp. 633–646. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5788-0_60

    Chapter  Google Scholar 

  • Raghavendra, A., Guru, D.S., Rao, M.K.: Hierarchical approach for ripeness grading of mangoes. Artif. Intell. Agric. 4, 243–252 (2020). https://doi.org/10.1016/j.aiia.2020.10.003

    Article  Google Scholar 

  • Raghavendra, A., Guru, D.S., Rao, M.K.: Mango internal defect detection based on optimal wavelength selection method using NIR spectroscopy. Artif. Intell. Agric. 5, 43–51 (2021). https://doi.org/10.1016/j.aiia.2021.01.005

    Article  Google Scholar 

  • Raghavendra, A.: Machine learning approaches for quality evaluation of mangoes. Ph. D Dissertation, Electronics, University of Mysore, Karnataka. Accessed 18 Aug 2021

    Google Scholar 

  • Nicolaï, B.M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K.I., Lammertyn, J.: Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol. Technol. 46(2), 99–118 (2007). https://doi.org/10.1016/j.postharvbio.2007.06.024

    Article  Google Scholar 

  • Nandi, C.S., Tudu, B., Koley, C.: Machine vision based techniques for automatic mango fruit sorting and grading based on maturity level and size. In: Mason, A., Mukhopadhyay, S.C., Jayasundera, K.P., Bhattacharyya, N. (eds.) Sensing Technology: Current Status and Future Trends II. SSMI, vol. 8, pp. 27–46. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02315-1_2

    Chapter  Google Scholar 

  • Chhabra, M., Gaur, R., Reel, P.S.: Detection of fully and partially RIPED mango by machine vision. ICRTITCS Proceedings Published in IJCA 5, 25–31 (2012)

    Google Scholar 

  • Duda, R.O., Hart, P.E., Stork. D.G.: Pattern Classification. A Wiley-Interscience Publication John Wiley & Sons, Inc. (2012)

    Google Scholar 

  • Rezende, E., Ruppert, G., Carvalho, T., Ramos, F., de Geus, P.: Malicious software classification using transfer learning of ResNet-50 deep neural network. In: 16th IEEE International Conference on Machine Learning and Applications. 0-7695-6321-X/17/31.00 (2017)

    Google Scholar 

  • Effect of ethrel spray on the ripening behaviour of mango (Mangiferaindica L.) variety ‘Dashehari’. J. Appl. Nat. Sci.

    Google Scholar 

  • Saldana, E., Siche, R., Lujan, M., Quevedo, R.: Computers and electronics in postharvest technology - a review. Baz. J. Food Technol. 30(1–3), 109–124 (2001)

    Google Scholar 

  • Goovaerts, P.: Estimation or simulation of soil properties? an optimization problem with conflicting criteria. Geoderma 3, 165–186 (2000)

    Article  Google Scholar 

  • https://www.mid-day.com/articles/cac2-may-cause-cancer-blindness-seizures/15346168

  • Inter Institutional Inclusive Innovations Centre. www.i4c.co.in/idea/getIdeaProfile/idea_id/2969

  • Nutritional Talk. https://nwg-works.blogspot.in/2013/04/how-to-identify-banana-ripened-using.html

  • LiveChennai.com. http://www.livechennai.com/healthnews.asp?newsid=10973

  • Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. (2018). https://doi.org/10.1016/j.compag.2018.02.016

    Article  Google Scholar 

  • Khoje, A.S., Bodhe, S.K.: Comparative performance evaluation of fast discrete curvelet transform and colour texture moments as texture features for fruit skin damage detection” Springer. J. Food Sci. Technol. (2015). https://doi.org/10.1007/s13197-015-1794-3

  • Khoje, A.S., Bodhe, S.K.: Application of colour texture moments to detect external skin damages in guavas (Psidium guajava L). World Appl. Sci. J. 27(5), 590–596 (2013)

    Google Scholar 

  • Khoje, S., Bodhe, S.: Performance comparison of Fourier transform and its derivatives as shape descriptors for mango grading. Int. J. Comput. Appl. 53(3), 17–22 (2012)

    Google Scholar 

  • Khoje, S., Bodhe, S.: Comparative performance evaluation of size metrics and classifiers in computer vision based automatic mango grading. Int. J. Comput. Appl. 61(9), 1–7 (2013)

    Google Scholar 

  • LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 3361(10) (1995)

    Google Scholar 

  • LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature, Intell. Control Autom. 7(4), 521(7553), 436–444. LiveChennai.com http://www.livechennai.com/healthnews.asp?newsid=10973 (2015)

  • Mansor, A.R., et al.: Fuzzy ripening mango index using RGB color sensor model. Res. World-J. Arts Sci. Commer. 5(2) (2014). E-ISSN2229-4686 ISSN2231-4172

    Google Scholar 

  • Moureen, A., Rao, M., Raghavendra, A.: An image segmentation comparison approach for lesion detection and area calculation in mangoes. Int. Res. J. Eng. Technol. (IRJET). 2(5) (2015)

    Google Scholar 

  • Musale, S.S., Patil, P.M.: Identification of defective mangoes using Gabor wavelets: A non-destructive technique based on texture analysis. Int. J. Agric. Innov. Res. 2(6) (2014). ISSN 2319-1473

    Google Scholar 

  • Nanna, K., et al.: Detecting mango fruits by using randomized Hough transform and backpropagation neural network. In: IEEE Conference (2014). https://doi.org/10.1109/IV.2014.54

  • Pauly, L., Sankar, D.: A New method for sorting and grading of mangoes based on computer vision system. IEEE Conf. (2015). https://doi.org/10.1109/IADCC.2015.715489

    Article  Google Scholar 

  • Rivea, N.V., Perez, J.J.C.: Description of maturity stages of mango ‘Manila’ by image analysis and ripening index

    Google Scholar 

  • Roomi, M.M., et al.: Classification of mangoes by object features and contour modeling. IEEE (2012). https://doi.org/10.1109/MVIP.2012.6428786

  • Salunkhe, R.P., Patil, A.A.: Image processing for Mango ripening stage detection: RGB and HSV method. IEEE Conf. (2015). https://doi.org/10.1109/ICIIP.2015.7414796

    Article  Google Scholar 

  • Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  • Ray, S.: Disease classification within dermascopic images using features extracted by ResNet50 and classification through deep forest. Comput. Vis. Pattern Recogn. (2018). arXiv:1807.05711

  • Ashok, V., Vinod, D.S.: Using K-means cluster and fuzzy C means for defect segmentation in fruits. Int. J. Comput. Eng. Technol. (2014)

    Google Scholar 

  • MVyas, A., Talati, B., Naik, S.: Quality inspection and classification of mangoes using color and size features. Int. J. Comput. Appl. 98(1), 1–5 (2014)

    Google Scholar 

  • Zheng, W., Zhao, L., Zou, C.: Locally nearest neighbor classifiers for pattern classification. Pattern Regonit. 37(6), 1307–1309 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anitha Raghavendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guru, D.S., Raghavendra, A., Rao, M.K. (2022). Post-harvest Handling of Mangoes: An Integrated Solution Using Machine Learning Approach. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11349-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11348-2

  • Online ISBN: 978-3-031-11349-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics