Abstract
Foreground segmentation in videos is a perplexing task. Infrequent motion of objects, illumination, shadow, camouflage, etc. are major factors which degrades the quality of segmentation. Usage of visual features like color, texture or shape, deficiencies the acquaintance of semantic evidence for foreground segmentation. In this paper, a novel compact multiscale motion saliency encoder-decoder learning network, ((MS)2EDNet) is presented for moving object detection (MOD). Initially, the lengthy streaming video is split into several small video streams (SVS). The background for each SVS is estimated using proposed network. Further, the saliency map is estimated via the input frames and estimated background for each SVS. Further, a compact multiscale encoder–decoder network (MSEDNet) is presented to extract the multiscale foregrounds from saliency maps. The extracted multiscale foregrounds are integrated to estimate the final foreground of the video frame. The effectiveness of the proposed (MS)2EDNet is estimated on three standard datasets (CDnet-2014 [1], and Wallflower [3]) for MOD. The compactness of the (MS)2EDNet is analyzed based on computational complexity and compared with the present approaches. Experimental study shows that proposed network outpaces the present state-of-the-art approaches on three standard datasets for MOD in terms of both detection accuracy and computational complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Y. Wang, P. M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, and P. Ishwar.: An expanded change detection benchmark dataset. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 393–400 (2014)
Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 1(1), pp. 255–261 (1999)
Gupta, A.K., Seal, A., Prasad, M., Khanna, P.: Salient object detection techniques in computer vision—a survey. Entropy 22(10), 1174 (2020)
Wu, Z., Dahua Lin, X.T.: Adjustable bounded rectifiers: towards deep binary representations. arXiv Prepr. arXiv:1511.06201, pp. 1–11 (2015)
Lin, H., Member, S., Liu, T., Chuang, J., Member, S.: Learning a scene background model via classification. IEEE Trans. Signal Process 57(5), 1641–1654 (2009)
Agarwala, A., et al.: Interactive digital photomontage. ACM SIGGRAPH 2004 Pap. - SIGGRAPH ’04 1(212), 294 (2004)
Xu, X., Huang, T.S.: A loopy belief propagation approach for robust background estimation. In: 26th IEEE Conference on Computer Vision and Pattern Recognition. CVPR (2008)
Liang, C.W., Juang, C.F.: Moving object classification using a combination of static appearance features and spatial and temporal entropy values of optical flows. IEEE Trans. Intell. Transpor. Syst. 16(6), 3453–3464 (2015)
Jiang, S., Lu, X.: WeSamBE: a weight-sample-based method for background subtraction. IEEE Trans. Circu. Syst. Video Technol. 8215, 1–10 (2017)
Xi, T., Zhao, W., Wang, H., Lin, W.: Salient object detection with spatiotemporal background priors for video. IEEE Trans. Image Process. 26(7), 3425–3436 (2017)
Chen, Y., Wang, J., Zhu, B., Tang, M., Lu, H.: Pixel-wise deep sequence learning for moving object detection. IEEE Trans. Circuits Syst. Video Technol. 8215, 1–13 (2017)
Yeh, C., Member, S., Lin, C., Muchtar, K., Lai, H., Motivation, A.: Three-pronged compensation and hysteresis thresholding for moving object detection in real-time video surveillance. IEEE Trans. Ind. Electron. 64(6), 4945–4955 (2017)
Liao, S., Zhao, G., Kellokumpu, V., Pietikäinen, M., Li, S.Z.: Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1301–1306 (2010)
Wang, R., Bunyak, F., Seetharaman, G., Palaniappan, K.: Static and moving object detection using flux tensor with split gaussian models. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 420–424 (2014)
St-Charles, P.-L., Bilodeau, G.-A., Bergevin, R.: SuBSENSE: a universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24(1), 359–373 (2015)
Bianco, S., Ciocca, G., Schettini, R.: Combination of video change detection algorithms by genetic programming. IEEE Trans. Evol. Comput. 21(6), 914–928 (2017)
Romero, J.D., Lado, M.J., Mendez, A.J.: A background modeling and foreground detection algorithm using scaling coefficients defined with a color model called lightness-red-green-blue. IEEE Trans. Image Process. 27(3), 1243–1258 (2017)
Lin, Y., Tong, Y., Cao, Y., Zhou, Y., Wang, S.: Visual-attention-based background modeling for detecting infrequently moving objects. IEEE Trans. Circuits Syst. Video Technol. 27(6), 1208–1221 (2017)
Aytekin, C., Possegger, H., Mauthner, T., Kiranyaz, S., Bischof, H., Gabbouj, M.: Spatiotemporal saliency estimation by spectral foreground detection. IEEE Trans. Multim. 20(1), 82–95 (2018)
Pang, Y., Member, S., Ye, L., Li, X., Pan, J.: Incremental learning with saliency map for moving object detection. IEEE Trans. Circu. Sys. Video Technol. (TCSVT) 1, 1–12 (2016)
Braham, M., Van Droogenbroeck, M.: Deep background subtraction with scene-specific convolutional neural networks. In: International Conference on Systems, Signals, and Image Processing, pp. 1–4 (2016)
Wang, W., Shen, J., Shao, L.: Video salient object detection via fully convolutional networks. IEEE Trans. Image Process. 27(1), 38–49 (2018)
Yang, L., Li, J., Member, S., Luo, Y., Member, S.: Deep background modeling using fully convolutional network. IEEE Trans. Intell. Transp. Syst. 19(1), 254–262 (2018)
Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv Prepr. arXiv:1409.1556, pp. 1–14 (2014)
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
Roy, S.M., Ghosh, A.: Real-time adaptive histogram min-max bucket (HMMB) model for background subtraction. IEEE Trans. Circuits Syst. Video Technol. 8215(c), 1–1 (2017)
Cai, B., Xu, X., Jia, K., Qing, C.: DehazeNet : an end-to-end system for single image haze removal. IEEE Trans. Image Proce.ss 25(11), 1–13 (2016)
Wu, Z., Lin, D., Tang, X.: Adjustable bounded rectifiers: towards deep binary representations. arXiv Prepr. arXiv1511.06201, pp. 1–11 (2015)
Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 07–12–June, pp. 1–9 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: A self-adjusting approach to change detection based on background word consensus. In: IEEE Winter Conference on Applications of Computer Vision, WACV 2015, pp. 990–997 (2015)
Babaee, M., Dinh, D.T., Rigoll, G.: A Deep Convolutional Neural Network for Background Subtraction. arXiv preprint arXiv:1702.01731 (2017)
Zivkovic, Z., Van Der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit. Lett. 27(7), 773–780 (2006)
Barnich, O., Van Droogenbroeck, M.: ViBe : a universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011)
Schindler, K., Wang, H.: Smooth foreground-background segmentation for video processing. In: Asian Conference on Computer Visio, pp. 581–590 (2006)
Pan, J., Li, X., Li, X., Pang, Y.: Incrementally detecting moving objects in video with sparsity and connectivity. Cognit. Comput. 8(3), 420–428 (2016)
He, J., Balzano, L., Szlam, A.: Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1568–1575 (2012)
Guo, X., Wang, X., Yang, L., Cao, X., Ma, Y.: Robust foreground detection using smoothness and arbitrariness constraints. In: European Conference on Computer Vision, pp. 535–550 (2014)
Dikmen, M., Huang, T.S.: Robust estimation of foreground in surveillance videos by sparse error estimation. In: 19th International Conference on Pattern Recognition, pp. 1–4 (2008)
Sheikh, Y., Shah, M.: Bayesian modeling of dynamic scenes for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1778–1792 (2005)
Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005)
Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Work, pp. 38–43 (2012)
Yang, L., Cheng, H., Su, J., Li, X.: Pixel-to-model distance for robust background reconstruction. IEEE Trans. Circuits Syst. Video Technol. 26(5), 903–916 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Randive, S.N., Bhangale, K.B., Mapari, R.G., Napte, K.M., Wane, K.B. (2022). (MS)2EDNet: Multiscale Motion Saliency Deep Network for Moving Object Detection. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-11349-9_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11348-2
Online ISBN: 978-3-031-11349-9
eBook Packages: Computer ScienceComputer Science (R0)