Abstract
The objective of this paper is to reveal the implementation technique of fractional order proportional, integral and derivative (FOPID) controller for the class of nonlinear systems and its tuning method via the gravitation search algorithm (GSA) in a tracking control. The proposed method utilizes the continuous surface of the FOPID controller to deal with the effect of nonlinearities in the plant. The class of non-linear integer order plant with FOPID controller results in a fractional-order dynamic system. The fractional-order dynamics are transformed into an algebraic vector-matrix equation using the non-sinusoidal orthogonal function (NSOF) set. The FOPID controller is tuned via GSA in the NSOF domain for a benchmark simulation case study to validate the proposed scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hagglund, T., Astrom, K.J.: PID controllers: theory, design, and tuning. ISA-The Instrumentation, Systems, and Automation Society (1995)
Kiong, T.K., Qing-Guo, W., Chieh, H.C., Hägglund, T.J.: Advances in PID Control. Springer, London (1999). https://doi.org/10.1007/978-1-4471-0861-0
Åström, K.J., Hägglund, T.: The future of PID control. Control. Eng. Pract. 9(11), 1163–1175 (2001)
Åström, K.J.: Autonomous controllers. Control. Eng. Pract. 1(2), 227–232 (1993)
Åström, K.J., Hang, C.C., Persson, P., Ho, W.K.: Towards intelligent PID control. Automatica 28(1), 1–9 (1992)
Viola, J., Angel, L.: Delta parallel robotic manipulator tracking control using fractional order controllers. IEEE Lat. Am. Trans. 17(03), 393–400 (2019)
Bertsias, P., et al.: Design of operational amplifier based fractional-order controller for a maglev system. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 221–224. IEEE (2020)
Dimeas, I., Petras, I., Psychalinos, C.: New analog implementation technique for fractional-order controller: a DC motor control. AEU-Int. J. Electron. Commun. 78, 192–200 (2017)
Pappas, G., Alimisis, V., Dimas, C., Sotiriadis, P.P.: Analogue realization of a fully tunable fractional-order PID controller for a DC motor. In: 2020 32nd International Conference on Microelectronics (ICM), pp. 1–4. IEEE (2020)
Yaghi, M., Efe, M.Ö.: H2/hinfinty-neural-based FOPID controller applied for radar-guided missile. IEEE Trans. Industr. Electron. 67(6), 4806–4814 (2019)
Podlubny, I.: Fractional-order systems and PI/sup/spl lambda//D/sup/spl mu//-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)
Yeroglu, C., Tan, N.: Note on fractional-order proportional-integral-differential controller design. IET Control Theory Appl. 5(17), 1978–1989 (2011)
Oldham, K., Spanier, J.: The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier (1974)
Sabatier, O.P., Machado, J.A.T.: Advances in fractional calculus: the-oretical developments and applications in physics and engineering. SIAM J. Appl. Math. 63, 612 (2003)
Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0457-6
Pan, I., Das, S.: Intelligent Fractional Order Systems and Control: An Introduction, vol. 438. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31549-7
Sharma, K.D., Chatterjee, A., Rakshit, A.: A hybrid approach for design of stable adaptive fuzzy controllers employing Lyapunov theory and particle swarm optimization. IEEE Trans. Fuzzy Syst. 17(2), 329–342 (2009)
Deb, A., Sarkar, G., Mandal, P., Biswas, A., Ganguly, A., Biswas, D.: Transfer function identification from impulse response via a new set of orthogonal hybrid functions (HF). Appl. Math. Comput. 218(9), 4760–4787 (2012)
Deb, A., Sarkar, G., Sengupta, A.: Triangular Orthogonal Functions for the Analysis of Continuous Time Systems. Anthem Press, London (2011)
Biswas, D., Sharma, K.D., Sarkar, G.: Stable adaptive NSOF domain FOPID controller for a class of non-linear systems. IET Control Theory Appl. 12(10), 1402–1413 (2018)
Khalil, H.K.: Nonlinear systems (2002)
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
Chakraborti, T., Sharma, K.D., Chatterjee, A.: A novel local extrema based gravitational search algorithm and its application in face recognition using one training image per class. Eng. Appl. Artif. Intell. 34, 13–22 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Biswas, D., Sharma, K.D., Sarkar, G. (2022). GSA Based FOPID Controller Tuning in NSOF Domain for a Class of Nonlinear Systems. In: Mukhopadhyay, S., Sarkar, S., Dutta, P., Mandal, J.K., Roy, S. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2022. Communications in Computer and Information Science, vol 1579. Springer, Cham. https://doi.org/10.1007/978-3-031-10766-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-10766-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10765-8
Online ISBN: 978-3-031-10766-5
eBook Packages: Computer ScienceComputer Science (R0)