[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

GSA Based FOPID Controller Tuning in NSOF Domain for a Class of Nonlinear Systems

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2022)

Abstract

The objective of this paper is to reveal the implementation technique of fractional order proportional, integral and derivative (FOPID) controller for the class of nonlinear systems and its tuning method via the gravitation search algorithm (GSA) in a tracking control. The proposed method utilizes the continuous surface of the FOPID controller to deal with the effect of nonlinearities in the plant. The class of non-linear integer order plant with FOPID controller results in a fractional-order dynamic system. The fractional-order dynamics are transformed into an algebraic vector-matrix equation using the non-sinusoidal orthogonal function (NSOF) set. The FOPID controller is tuned via GSA in the NSOF domain for a benchmark simulation case study to validate the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hagglund, T., Astrom, K.J.: PID controllers: theory, design, and tuning. ISA-The Instrumentation, Systems, and Automation Society (1995)

    Google Scholar 

  2. Kiong, T.K., Qing-Guo, W., Chieh, H.C., Hägglund, T.J.: Advances in PID Control. Springer, London (1999). https://doi.org/10.1007/978-1-4471-0861-0

    Book  Google Scholar 

  3. Åström, K.J., Hägglund, T.: The future of PID control. Control. Eng. Pract. 9(11), 1163–1175 (2001)

    Article  Google Scholar 

  4. Åström, K.J.: Autonomous controllers. Control. Eng. Pract. 1(2), 227–232 (1993)

    Article  Google Scholar 

  5. Åström, K.J., Hang, C.C., Persson, P., Ho, W.K.: Towards intelligent PID control. Automatica 28(1), 1–9 (1992)

    Article  Google Scholar 

  6. Viola, J., Angel, L.: Delta parallel robotic manipulator tracking control using fractional order controllers. IEEE Lat. Am. Trans. 17(03), 393–400 (2019)

    Article  Google Scholar 

  7. Bertsias, P., et al.: Design of operational amplifier based fractional-order controller for a maglev system. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 221–224. IEEE (2020)

    Google Scholar 

  8. Dimeas, I., Petras, I., Psychalinos, C.: New analog implementation technique for fractional-order controller: a DC motor control. AEU-Int. J. Electron. Commun. 78, 192–200 (2017)

    Article  Google Scholar 

  9. Pappas, G., Alimisis, V., Dimas, C., Sotiriadis, P.P.: Analogue realization of a fully tunable fractional-order PID controller for a DC motor. In: 2020 32nd International Conference on Microelectronics (ICM), pp. 1–4. IEEE (2020)

    Google Scholar 

  10. Yaghi, M., Efe, M.Ö.: H2/hinfinty-neural-based FOPID controller applied for radar-guided missile. IEEE Trans. Industr. Electron. 67(6), 4806–4814 (2019)

    Article  Google Scholar 

  11. Podlubny, I.: Fractional-order systems and PI/sup/spl lambda//D/sup/spl mu//-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MATH  Google Scholar 

  12. Yeroglu, C., Tan, N.: Note on fractional-order proportional-integral-differential controller design. IET Control Theory Appl. 5(17), 1978–1989 (2011)

    Article  MathSciNet  Google Scholar 

  13. Oldham, K., Spanier, J.: The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier (1974)

    Google Scholar 

  14. Sabatier, O.P., Machado, J.A.T.: Advances in fractional calculus: the-oretical developments and applications in physics and engineering. SIAM J. Appl. Math. 63, 612 (2003)

    Google Scholar 

  15. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0457-6

    Book  Google Scholar 

  16. Pan, I., Das, S.: Intelligent Fractional Order Systems and Control: An Introduction, vol. 438. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31549-7

    Book  MATH  Google Scholar 

  17. Sharma, K.D., Chatterjee, A., Rakshit, A.: A hybrid approach for design of stable adaptive fuzzy controllers employing Lyapunov theory and particle swarm optimization. IEEE Trans. Fuzzy Syst. 17(2), 329–342 (2009)

    Article  Google Scholar 

  18. Deb, A., Sarkar, G., Mandal, P., Biswas, A., Ganguly, A., Biswas, D.: Transfer function identification from impulse response via a new set of orthogonal hybrid functions (HF). Appl. Math. Comput. 218(9), 4760–4787 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Deb, A., Sarkar, G., Sengupta, A.: Triangular Orthogonal Functions for the Analysis of Continuous Time Systems. Anthem Press, London (2011)

    Book  MATH  Google Scholar 

  20. Biswas, D., Sharma, K.D., Sarkar, G.: Stable adaptive NSOF domain FOPID controller for a class of non-linear systems. IET Control Theory Appl. 12(10), 1402–1413 (2018)

    Article  MathSciNet  Google Scholar 

  21. Khalil, H.K.: Nonlinear systems (2002)

    Google Scholar 

  22. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  23. Chakraborti, T., Sharma, K.D., Chatterjee, A.: A novel local extrema based gravitational search algorithm and its application in face recognition using one training image per class. Eng. Appl. Artif. Intell. 34, 13–22 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasish Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biswas, D., Sharma, K.D., Sarkar, G. (2022). GSA Based FOPID Controller Tuning in NSOF Domain for a Class of Nonlinear Systems. In: Mukhopadhyay, S., Sarkar, S., Dutta, P., Mandal, J.K., Roy, S. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2022. Communications in Computer and Information Science, vol 1579. Springer, Cham. https://doi.org/10.1007/978-3-031-10766-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10766-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10765-8

  • Online ISBN: 978-3-031-10766-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics