[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Stereo-Dynamics of Autoionization Reactions Induced by Ne*(3P0,2) Metastable Atoms with HCl and HBr Molecules: Experimental and Theoretical Study of the Reactivity Through Selective Collisional Angular Cones

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

In this paper are presented mass spectrometric determinations as a function of the collision energy in the 0.03–0.50 eV range as recorded in a crossed molecular beam experiments involving autoionization reactions between Ne*(3P2,0) metastable atoms and HCl and HBr molecules. The total and partial ionization cross sections for both investigated systems are presented and discussed in a comparative way. The comparison of the recorded data allows to point out similarities and differences on the collisional stereodynamics of Ne*(3P0,2)-HCl and Ne*(3P0,2)-HBr systems. In particular, an accurate characterization of the interaction potentials, which is mandatory for a comprehensive description of Ne*-HX (X = Cl and Br) reactive collisions, has been outlined. Such a theoretical analysis suggests that the formation of the proton transfer, NeH+, ions as well as of other possible product ions (i.e. HX+ and NeHX+, parent and associate ions, respectively) comes from reactivity that is selectively open along angular cones showing different orientation and acceptance. In particular, the performed analysis highlights that the proton transfer rearrangement reaction, which is open in both Ne*-HX autoionizing collision, is much more efficient for Ne*+HCl respect to Ne*+HBr autoionization. The present investigation points out that such an efficiency variation is related to the following crucial points: (i) the different charge distribution on HX+ ionic products, (ii) the balance between two distinct microscopic mechanisms that are operative in such processes (a pure physical-photoionization-indirect mechanism and a chemical-oxidation-direct mechanism), which are reactions of interest in combustion chemistry, plasma physics and chemistry, as well as in astrochemistry and for the chemistry of planetary ionospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hotop, H., Illenberger, E., Morgner, H., Niehaus, A.: Chem. Phys. Lett. 10(5), 493–497 (1971)

    Article  Google Scholar 

  2. Siska, P.E.: Rev. Mod. Phys. 65, 337 (1993)

    Article  Google Scholar 

  3. Brunetti, B., Vecchiocattivi, F.: Autoionization dynamics of collisional complexes. In: Ng, C.Y., Baer, T., Powis, I. (eds.) Current Topic on Ion Chemistry and Physics, pp. 359–445. Wiley, New York (1993)

    Google Scholar 

  4. Falcinelli, S., Pirani, F., Candori, P., Brunetti, B.G., Farrar, J.M., Vecchiocattivi, F.: Front. Chem. 7, 445 (2019)

    Article  Google Scholar 

  5. Falcinelli, S., Pirani, F., Vecchiocattivi, F.: Atmosphere 6(3), 299–317 (2015)

    Article  Google Scholar 

  6. Alagia, M., Balucani, N., Candori, P., Falcinelli, S., Richter, et al.: Rendiconti Lincei Scienze Fisiche e Naturali 24, 53–65 (2013)

    Google Scholar 

  7. Dulieu, O., Osterwalder, A.: Cold Chemistry, pp. 1–670. Molecular Scattering and Reactivity Near Absolute Zero, Royal Society of Chemistry, Cambridge (2018)

    Google Scholar 

  8. Calcote, H.F.: Electrical properties of flames. Symp. Combust. Flame Explos. Phenom. 3(1), 245–253 (1948)

    Article  Google Scholar 

  9. Sugden, T.M.: Excited species in flames. Annu. Rev. Phys. Chem. 13(1), 369–390 (1962)

    Article  Google Scholar 

  10. Falcinelli, S., Vecchiocattivi, F., Pirani, F.: Phys. Rev. Lett. 121, 163403 (2018)

    Article  Google Scholar 

  11. Falcinelli, S., Vecchiocattivi, F., Pirani, F.: Commun. Chem 3, 64 (2020)

    Article  Google Scholar 

  12. Falcinelli, S., Farrar, J.M., Vecchiocattivi, F., Pirani, F.: Acc. Chem. Res. 53, 2248 (2020)

    Article  Google Scholar 

  13. Bettendorff, M., Peyerimhoff, S.D., Buenker, R.J.: Chem. Phys. 66, 261 (1982)

    Article  Google Scholar 

  14. Werner, H.-J., Rosmus, P., Schätzl, W., Meyer, W.: J. Chem. Phys. 80, 831 (1984)

    Google Scholar 

  15. Chapman, D.A., Balasubramanian, K., Sin, S.H.: Phys. Rev. A 38, 6098 (1988)

    Article  Google Scholar 

  16. Candori, P., Falcinelli, S., Pirani, F., Tarantelli, F., Vecchiocattivi, F.: Chem. Phys. Lett. 436, 322–326 (2007)

    Article  Google Scholar 

  17. Snyder, H.L., Smith, B.T., Martin, R.M.: Chem. Phys. Lett. 94, 90 (1983)

    Article  Google Scholar 

  18. de Vries, M.S., Tyndall, G.W., Martin, R.M.: J. Chem. Phys. 80, 1366 (1984)

    Google Scholar 

  19. Tsuji, M., Maier, J.P., Obase, H., Nishimura, Y.: Chem. Phys. 110, 17–26 (1986)

    Article  Google Scholar 

  20. Obase, H., Tsuji, M., Nishimura, Y.: J. Chem. Phys. 87, 2695–2699 (1987)

    Article  Google Scholar 

  21. Simon, W., Yencha, A.J., Ruf, M.-W., Hotop, H.: Z. Phys. D 8, 71 (1988)

    Article  Google Scholar 

  22. Tokue, I., Tanaka, H., Yamasaki, K.: J. Phys. Chem. A 106, 6068-6074 (2002)

    Google Scholar 

  23. Aguilar Navarro, A., Brunetti, B., Falcinelli, S., Gonzalez, M., Vecchiocattivi, F.: J. Chem. Phys. 96(1), 433–439 (1992)

    Article  Google Scholar 

  24. Brunetti, B., Cambi, R., Falcinelli, S., Farrar, J.M., Vecchiocattivi, F.: J. Phys. Chem. 97(46), 11877-11882 (1993)

    Google Scholar 

  25. Yencha, A.J., Ganz, J., Ruf, M.-W., Hotop, H.: Z. Phys. D - Atoms Mol. Clust. 14, 57–76 (1989)

    Google Scholar 

  26. Yencha, A.J., Ruf, M.-W., Hotop, H.: Z. Phys. D - Atoms Mol. Clust. 21, 113–130 (1991)

    Google Scholar 

  27. Imura, K., Kishimoto, N., Ohno, K.: J. Phys. Chem. A 106, 3759–3765 (2002)

    Google Scholar 

  28. Bethe, H.A.: Phys. Rev. 57, 1125–1144 (1940)

    Article  Google Scholar 

  29. Miller, W.H., Morgner, H.: J. Chem. Phys. 67, 4923–4930 (1977)

    Google Scholar 

  30. Gregor, R.W., Siska, P.E.: J. Chem. Phys. 74, 1078–1092 (1981)

    Google Scholar 

  31. Brunetti, B., Candori, P., Falcinelli, S., Pirani, F., Vecchiocattivi, F.: J. Chem. Phys. 139(16), 164305 (2013)

    Google Scholar 

  32. Falcinelli, S., Candori, P., Pirani, F., Vecchiocattivi, F.: Phys. Chem. Chem. Phys. 19(10), 6933–6944 (2017)

    Article  Google Scholar 

  33. Falcinelli, S., Vecchiocattivi, F., Pirani, F.: J. Phys. Chem. A 125(7), 1461–1467 (2021)

    Google Scholar 

  34. Falcinelli, S., Vecchiocattivi, F., Pirani, F.: J. Chem. Phys. 150(4), 044305 (2019)

    Google Scholar 

  35. Nakamura, H.: J. Chem. Phys. Jpn. 26, 1473–1479 (1969)

    Article  Google Scholar 

  36. Miller, W.H.: J. Chem. Phys. 52, 3563–3572 (1970)

    Article  Google Scholar 

  37. Falcinelli, S., Bartocci, A., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Chem. Eur. J. 22(2), 764–771 (2016)

    Article  Google Scholar 

  38. Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Chem. Eur. J. 22(35), 12518–12526 (2016)

    Article  Google Scholar 

  39. Biondini, F., Brunetti, B.G., Candori, P., De Angelis, F., et al.: J. Chem. Phys. 122(16), 164308 (2005)

    Google Scholar 

  40. Brunetti, B., Candori, P., Falcinelli, S., Lescop, B., et al.: Eur. Phys. J. D 38(1), 21–27 (2006)

    Article  Google Scholar 

  41. Brunetti, B.G., Candori, P., Cappelletti, D., Falcinelli, S., et al.: Chem. Phys. Lett. 539–540, 19–23 (2012)

    Article  Google Scholar 

  42. Falcinelli, S., Vecchiocattivi, F., Pirani, F.: Sci. Rep. 11, 19105 (2021)

    Article  Google Scholar 

  43. Falcinelli, S., Vecchiocattivi, F., Farrar, J.M., Brunetti, B.G., Cavalli, S., Pirani, F.: Chem. Phys. Lett. 778, 138813 (2021)

    Article  Google Scholar 

  44. Falcinelli, S., Vecchiocattivi, F., Farrar, J.M., Pirani, F.: J. Phys. Chem. A 125(16), 3307–3315 (2021)

    Google Scholar 

  45. Falcinelli, S., et al.: RSC Adv. 12, 7587–7593 (2022)

    Article  Google Scholar 

  46. Skouteris, D., Balucani, N., Ceccarelli, C., Faginas Lago, N., et al.: MNRAS 482(3), 3567–3575 (2019)

    Article  Google Scholar 

  47. Bartocci, A., Belpassi, L., Cappelletti, D., Falcinelli, S., et al.: J. Chem. Phys. 142(18), 184304 (2015)

    Google Scholar 

  48. Alagia, M., Candori, P., Falcinelli, S., Mundim, M.S.P., Pirani, F., et al.: J. Chem. Phys. 135(14), 144304 (2011)

    Google Scholar 

  49. Alagia, M., Biondini, F., Brunetti, B.G., Candori, P., et al.: J. Chem. Phys. 121(21), 10508–10512 (2004)

    Google Scholar 

  50. Brunetti, B., Candori, P., De Andres, J., Pirani, F., M. Rosi, et al.: J. Phys. Chem. A, 101(41), 7505–7512 (1997)

    Google Scholar 

Download references

Acknowledgments

This work was supported and financed with the “Fondo Ricerca di Base, 2018, dell’Università degli Studi di Perugia” (Project Titled: Indagini teoriche e sperimentali sulla reattività di sistemi di interesse astrochimico). Support from Italian MIUR and University of Perugia (Italy) is acknowledged within the program “Dipartimenti di Eccellenza 2018–2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Falcinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parriani, M., Vecchiocattivi, F., Pirani, F., Falcinelli, S. (2022). Stereo-Dynamics of Autoionization Reactions Induced by Ne*(3P0,2) Metastable Atoms with HCl and HBr Molecules: Experimental and Theoretical Study of the Reactivity Through Selective Collisional Angular Cones. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13378. Springer, Cham. https://doi.org/10.1007/978-3-031-10562-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10562-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10561-6

  • Online ISBN: 978-3-031-10562-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics