Abstract
The article deals with the problem of using digital twins and digital threads in complex distributed cyber-physical systems with a high level of structural and functional dynamics. A three-level model of the life cycle of a complex cyber-physical system is proposed. At the upper level, the observed system is described in terms of a continuous architecture. At the middle level, the observed system is described in terms of an agile architecture. At the lower level, the observed system is described in terms of a multigraph, which allows describe both the observed system structure and behavior. In the case study the solution of the problem of monitoring the state of the subway infrastructure is considered. The proposed approach has shown its effectiveness and can be applied in other domains such as smart cities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Calinescu, R.C., Camara Moreno, J., Paterson, C.: Socio-cyber-physical systems: models, opportunities. In: Proceedings of the Open Challenges 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems, Montreal, QC, Canada, 28 May 2019
Sanfelice, R.G.: Analysis and design of cyber-physical systems. A hybrid control systems approach. In: Rawat, D., Rodrigues, J., Stojmenovic, I. (eds.) Cyber-Physical Systems: From Theory to Practice. CRC Press, Boca Raton (2016). ISBN 978-1-4822-6333-6
Mahmood, Z.: Guide to Ambient Intelligence in the IoT Environment Principles, Technologies and Application, 289p. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04173-1
Marques, G., Pitarma, R., MGarcia, N., Pombo, N.: Internet of Things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: a review. Electronics 8, 1081 (2019). https://doi.org/10.3390/electronics8101081
Korzun, D., Balandina, E., Kashevnik, A., Balandin, S., Viola, F.: Ambient Intelligence Services in IoT Environments: Emerging Research and Opportunities, 199p. IGI-Global, Hershey (2019). https://doi.org/10.4018/978-1-52258973-0
Wu, Y., Hu, F., Min, G., Zomaya, A.Y.: Big Data and Computational Intelligence in Networking, 530p. Taylor & Francis Group, LLC, Boca Raton (2018)
Weilkiens, T., Lamm, J., Roth, S., Walker, M.: Model-Based System Architecture, 375p. Wiley, Hoboken (2016)
Babar, M.A., Brown, A.W., Mistrik, I.: Agile Software Architecture Aligning Agile Processes and Software Architectures, 292p. Morgan Kaufmann, Burlington (2014)
Ford, N., Parsons, R., Kua, P.: Building Evolutionary Architectures, 272p. O’Reilly Media, Sebastopol (2017)
Gasevic, D., Djuric, D., Devedzi, V. (eds.): Model Driven Architecture and Ontology Development. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-32182-9
Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective, 463p. Pearson Education, Inc., London (2015)
Bloomberg, J.: The Agile Architecture Revolution: How Cloud Computing, REST-based SOA, and Mobile Computing are Changing Enterprise IT, 278p. Wiley, Hoboken (2013)
van der Valk, H., Hunker, J., Rabe, M., Otto, B.: Digital twins in simulative applications: a taxonomy. In: Proceedings of the 2020 Winter Simulation Conference. https://www.researchgate.net/publication/341235159_A_Taxonomy_of_Digital_Twins. Accessed 5 May 2022
Digital Thread. https://searcherp.techtarget.com/definition/digital-thread. Accessed 5 May 2022
What is the Digital Thread? Digital Thread Definition. https://nxrev.com/2018/05/digitalthread/. Accessed 5 May 2022
Rozanski, N., Woods, E. (eds.): Software Systems Architecture: Working with Stakeholders Using Viewpoints and Perspectives, 576p. Viewpoints, Poland (2005)
Erder, M., Pureur, P., Woods, E.: Continuous Architecture in Practice Software Architecture in the Age of Agility and DevOps, Upper Saddle River, NJ, USA, 321p. (2021)
Shaw, M., Garlan, D. (eds.): Software Architecture: Perspectives on an Emerging Discipline, 242p. Prentice-Hall Inc., Hoboken (1996)
Vodyaho, A.I., Zhukova, N.A., Shichkina, Y.A., Anaam, F., Abbas, S.: About one approach to using dynamic models to build digital twins. Designs 6, 25 (2022)
Osipov, V., Stankova, E., Vodyaho, A., Lushnov, M., Shichkina, Y., Zhukova, N.: Automatic synthesis of multilevel automata models of biological objects. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11620, pp. 441–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24296-1_35
Osipov, V., Zhukova, N., Vodyaho, A.: About one approach to multilevel behavioral program synthesis for television devices. Int. J. Comput. Commun. 11, 17–25 (2017)
Vodyaho, A., Osipov, V., Zhukova, N., Chernokulsky, V.: Data collection technology for ambient intelligence systems in Internet of Things. https://doi.org/10.3390/electronics9111846. Accessed 5 May 2022
Osipov, V., Lushnov, M., Stankova, E., Vodyaho, A., Zukova, N.: Inductive synthesis of the models of biological systems according to clinical trials. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10404, pp. 103–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62392-4_8
Capilla, R., Bosch, J., Kang, K.C. (eds.): Systems and Software Variability Management, 317p. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36583-6
Xing, L.: Cascading failures in Internet of Things: review and perspectives on reliability and resilience. IEEE Internet Things J. 8, 44–64 (2020). https://doi.org/10.1109/JIOT.2020.3018687
Vodyaho, A., Zhukova, N., Subbotin, A., Anaam, F.: Towards dynamic model-based agile architecting of cyber-physical systems. Sensors 22(8), 3078 (2022). https://doi.org/10.3390/s22083078
Subbotin, A., Zhukova, N., Man, T.: Architecture of the intelligent video surveillance systems for fog environments based on embedded computers. In: Proceedings of the 2021 10th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–10 June 2022, pp. 1–8 (2022). https://doi.org/10.1109/MECO52532.2021.9460270
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vodyaho, A., Stankova, E., Zhukova, N., Subbotin, A., Chervontsev, M. (2022). Use of Digital Twins and Digital Threads for Subway Infrastructure Monitoring. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13380. Springer, Cham. https://doi.org/10.1007/978-3-031-10542-5_48
Download citation
DOI: https://doi.org/10.1007/978-3-031-10542-5_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10541-8
Online ISBN: 978-3-031-10542-5
eBook Packages: Computer ScienceComputer Science (R0)