Abstract
A deep energy transformation will be tried out across the globe in the next decades in order to detect potential green and renewable sources able to replace fossil fuels. Among the various alternatives, photovoltaic technology, recognized as sustainable, clean, and environmentally friendly essence, is considered one of the most relevant solutions. To date, the Remotely Piloted Aircraft System has been largely used to inspect solar parks albeit the treatment of very high-resolution satellite images through object-based models may be a valid option. In this work, the potentialities of two segmentation approaches (multi-resolution and mean-shift algorithms, implemented in eCognition Developer and Orfeo Toolbox software, respectively) in extracting photovoltaic panels from Sentinel-2 time series were explored and compared. Such techniques were tested in Montalto di Castro in Viterbo (Italy). Multi-resolution algorithm was applied by varying scale and shape parameters between 20 and 100 and 0.1 and 0.5, respectively. Conversely, the mean-shift approach was used by considering the default values of spatial radius and range radius. Their segmentation outcomes were compared on the base of i) minimum Euclidean Distance 2 (ED2), calculated in AssesSeg environment, ii) segmentation polygons statistics and areas value, and, lastly, iii) their performance in terms of processing time, versatility, ability of handling heavy data, and cost. ECognition Developer demonstrated a better performance in segmenting Sentinel 2-images for extracting PV systems in terms of segmentation parameters management and outcomes interpretation ability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Heinberg, R., Fridley, D.: Our Renewable Future: Laying the Path for One Hundred Percent Clean Energy; Island Press/Center for Resource Economics: Washington, pp. 1–15. DC, USA (2016)
Souffer, I., Sghiouar, M., Sebari, I., Zefri, Y., Hajji, H., Aniba, G.: Automatic extraction of photovoltaic panels from UAV imagery with object-based image analysis and machine learning. In: Bennani, S., Lakhrissi, Y., Khaissidi, G., Mansouri, A., Khamlichi, Y. (eds.) WITS 2020. LNEE, vol. 745, pp. 699–709. Springer, Singapore (2022). https://doi.org/10.1007/978-981-33-6893-4_64
Feldman, D., Ramasamy, V., Fu, R., Ramdas, A., Desai, J., Margolis, R.: U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark (2020)
Agrillo, A., Surace, V., Liberatore, P.: Direzione Studi e Monitoraggio di Sistema Funzione Statistiche e Monitoraggio. Gestore dei Servizi Energetici S.p.A, (2019)
Sahu, A., Yadav, N., Sudhakar, K.: Floating photovoltaic power plant: a review. Renew. Sustain. Energy Rev. 66, 815–824 (2016)
Pindozzi, S., Faugno, S., Cervelli, E., Capolupo, A., Sannino, M., Boccia, L.: Consequence of land use changes into energy crops in Campania region. J. Agric. Eng. 44(s2) (2013)
Katsikogiannis, O.A., Ziar, H., Isabella, O.: Integration of bifacial photovoltaics in agrivoltaic systems: a synergistic design approach. Appl. Energy 309, 118475 (2022)
Ferrara, C., Philipp, D.: Why do PV modules fail? Energy Procedia 15, 379–387 (2012)
Balzategui, J., et al.: Semi-automatic quality inspection of solar cell based on Convolutional Neural Networks. In: 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 529–535. IEEE, September 2019
Zhang, D., et al.: Aerial image analysis based on improved adaptive clustering for photovoltaic module inspection. In: 2017 International Smart Cities Conference (ISC2), pp. 1–6. IEEE, September 2017
Wang, M., Cui, Q., Sun, Y., Wang, Q.: Photovoltaic panel extraction from very high-resolution aerial imagery using region–line primitive association analysis and template matching. ISPRS J. Photogramm. Remote. Sens. 141, 100–111 (2018)
Novelli, A., Tarantino, E., Caradonna, G., Apollonio, C., Balacco, G., Piccinni, F.: Improving the ANN classification accuracy of landsat data through spectral indices and linear transformations (PCA and TCT) aimed at LU/LC monitoring of a river basin. In International Conference on Computational Science and Its Applications, pp. 420–432. Springer, Cham, , July 2016. https://doi.org/10.1007/978-3-319-42108-7_32
Blaschke, T.: Object based image analysis for remote sensing. ISPRS J. Photo-gramm. Remote Sens. 65(1), 2–16 (2010)
Santoro, F., Tarantino, E., Figorito, B., Gualano, S., D’Onghia, A.M.: A tree counting algorithm for precision agriculture tasks. Int. J. Digital Earth 6(1), 94–102 (2013)
Crocetto, N., Tarantino, E.: A class-oriented strategy for features extraction from multidate ASTER imagery. Remote Sens. 1(4), 1171–1189 (2009)
Tarantino, E.: Features extraction from multi-date ASTER imagery using a hybrid classification method for land cover transformations. In: Sixth International Symposium on Digital Earth: Models, Algorithms, and Virtual Reality, vol. 7840, p. 78401T. International Society for Optics and Photonics (2010)
Sarzana, T., Maltese, A., Capolupo, A., Tarantino, E.: Post-processing of pixel and object-based land cover classifications of very high spatial resolution images. In: International Conference on Computational Science and Its Applications, pp. 797–812. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58811-3_57
Capolupo, A., Boccia, L.: Innovative method for linking anthropisation process to vulnerability. World Rev. Sci. Technol. Sustain. Dev. 17(1), 4–22 (2021)
Sideris, K.: Review of image segmentation algorithms for analysing Sentinel-2 data over large geographical areas. JNCC (2020)
Grizonnet, M., Michel, J., Poughon, V., Inglada, J.: Mickaël, S., Cresson, R.: Orfeo ToolBox: Open source processing of remote sensing images. Open Geospatial Data, Software Stand. 2(1), 15 (2017)
Xia, Z., et al.: Mapping the rapid development of photovoltaic power stations in northwestern China using remote sensing. Energy Rep. 8, 4117–4127 (2022)
Khan, J., Arsalan, M.H.: Implementation of open source GIS tools to identify bright rooftops for solar photovoltaic applications–a case study of creek lanes, DHA, Karachi. J. Basic Appl. Sci. 12, 14–22 (2016)
Plakman, V., Rosier, J., van Vliet, J.: Solar park detection from publicly available satellite imagery. GISci. Remote Sens. 59(1), 461–480 (2022)
SMA Solar. https://www.sma-italia.com/. Accessed 21 Mar 2022
Infobuildenergia. https://www.infobuildenergia.it/. Accessed 15 Mar 2022
New tuscia. https://www.newtuscia.it/2020/06/14/. Accessed 10 Mar 2022
Scihub.copernicus. https://scihub.copernicus.eu. Accessed 15 Mar 2022
Czirjak, D.W.: Detecting photovoltaic solar panels using hyperspectral imagery and estimating solar power production. J. Appl. Remote Sens. 11(2), 026007 (2017)
Trimble Geospatial Inc., https://geospatial.trimble.com/what-is-ecognition. Accessed 20 Mar 2022
Orfeo ToolBox. https://www.orfeo-toolbox.org/. Accessed 20 Mar 2022
Novelli, A., Aguilar, M.A., Aguilar, F.J., Nemmaoui, A., Tarantino, E.: AssesSeg—a command line tool to quantify image segmentation quality: a test carried out in southern spain from satellite imagery. Remote Sens. 9(1), 40 (2017)
Qt. https://qt.io. Accessed 15 Mar 2022
QGIS Documentation. https://docs.qgis.org/3.10/it/docs/index.html. Accessed 20 Mar 2022
Novelli, A., Aguilar, M.A., Nemmaoui, A., Aguilar, F.J., Tarantino, E.: Performance evaluation of object-based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: a case study from Almería (Spain). Int. J. Appl. Earth Obs. Geoinf. 52, 403–411 (2016)
Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)
Sarkar, P.R.: Comparison of Segmentation Algorithms and Estimation of Optimal Segmentation Parameters for Very High-Resolution Satellite Imagery. Indian Institute of Space Science and Technology (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ladisa, C., Capolupo, A., Ripa, M.N., Tarantino, E. (2022). Evaluation of eCognition Developer and Orfeo ToolBox Performances for Segmenting Agrophotovoltaic Systems from Sentinel-2 Images. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13379. Springer, Cham. https://doi.org/10.1007/978-3-031-10545-6_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-10545-6_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10544-9
Online ISBN: 978-3-031-10545-6
eBook Packages: Computer ScienceComputer Science (R0)