[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Blind Source Separation Technique for Document Restoration Based on Image Discrete Derivative

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 (ICCSA 2022)

Abstract

In this paper we study a Blind Source Separation (BSS) problem, and in particular we deal with document restoration. We consider the classical linear model. To this aim, we analyze the derivatives of the images instead of the intensity levels. Thus, we establish non-overlapping constraints on document sources. Moreover, we impose that the rows of the mixture matrices of the sources have sum equal to 1, in order to keep equal the lightnesses of the estimated sources and those of the data. Here we give a technique which uses the symmetric factorization, whose goodness is tested by the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boccuto, A., Gerace, I., Giorgetti, V.: A blind source separation technique for document restoration. SIAM J. Imaging Sci. 12(2), 1135–1162 (2019)

    Article  MathSciNet  Google Scholar 

  2. Boccuto, A., Gerace, I., Giorgetti, V., Valenti, G.: A Blind Source Separation Technique for Document Restoration Based on Edge Estimation. http://viXra.org/abs/2201.0141 (2022)

  3. Chan, T.-H., Ma, W.-K., Chi, C.-Y., Wang, Y.: A convex analysis framework for blind separation of non-negative sources. IEEE Trans. Signal Process. 56(10), 5120–5134 (2008)

    Article  MathSciNet  Google Scholar 

  4. Cichocki, A., Zdunek, R., Amari, S.-I.: New algorithms for non-negative matrix factorization in applications to blind source separation. In: Proceedings of the 2006 IEEE International Conference Acoustics, Speech and Signal Processing, Toulouse, France, pp. 1–4 (2006)

    Google Scholar 

  5. Comon, P.: Independent component analysis, a new concept? Signal Process. 36, 287–314 (1994)

    Article  Google Scholar 

  6. Gillis, N.: Successive nonnegative projection algorithm for robust nonnegative blind source separation. SIAM J. Imaging Sci. 7(2), 1420–1450 (2014)

    Article  MathSciNet  Google Scholar 

  7. Gillis, N.: Sparse and unique nonnegative matrix factorization through data preprocessing. J. Mach. Learn. Res. 13, 3349–3386 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  9. Hyvärinen, A.: The fixed-point algorithm and maximum likelihood estimation for independent component analysis. Neural Process. Lett. 10(1), 1–5 (1999)

    Article  Google Scholar 

  10. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Comput. 9(7), 1483–1492 (1997)

    Article  Google Scholar 

  11. Khaparde, A., Madhavilatha, M., Manasa, M.B.L., Pradeep Kumar, S.: FastICA algorithm for the separation of mixed images. WSEAS Trans. Signal Process. 4(5), 271–278 (2008)

    Google Scholar 

  12. Malik, R. K., Solanki, K.: FastICA based blind source separation for CT imaging under noise conditions. Int. J. Adv. Eng. Technol. 5(1), 47–55 (2012)

    Google Scholar 

  13. Ouedraogo, W.S.B., Souloumiac, A., Jaidane, M., Jutten, C.: Non-negative blind source separation algorithm based on minimum aperture simplicial cone. IEEE Trans. Signal Process. 62(2), 376–389 (2014)

    Article  MathSciNet  Google Scholar 

  14. Tonazzini, A., Gerace, I., Martinelli, F.: Multichannel blind separation and deconvolution of images for document analysis. IEEE Trans. Image Process. 19(4), 912–925 (2010)

    Article  MathSciNet  Google Scholar 

  15. Tonazzini, A., Gerace, I., Martinelli, F.: Document image restoration and analysis as separation of mixtures of patterns: from linear to nonlinear models. In: Gunturk, B.K., Li, X. (eds.) Image Restoration - Fundamentals and Advances, pp. 285–310. CRC Press, Taylor and Francis, Boca Raton (2013)

    Google Scholar 

  16. Tonazzini, A., Salerno, E., Bedini, L.: Fast correction of bleed-through distortion in greyscale documents by a blind source separation technique. Int. J. Doc. Anal. 10(1), 17–25 (2007)

    Article  Google Scholar 

  17. Vavasis, S.: On the complexity of nonnegative matrix factorization. SIAM J. Optim. 20(3), 1364–1377 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by University of Perugia, G.N.A.M.P.A. (Italian National Group of Mathematical Analysis, Probability and Applications) and I.N.d.A.M. (Italian National Institute of Higher Mathematics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Gerace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boccuto, A., Gerace, I., Giorgetti, V., Valenti, G. (2022). A Blind Source Separation Technique for Document Restoration Based on Image Discrete Derivative. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, vol 13375. Springer, Cham. https://doi.org/10.1007/978-3-031-10522-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10522-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10521-0

  • Online ISBN: 978-3-031-10522-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics