[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Algorithms for Pixelwise Shape Deformations Preserving Digital Convexity

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2022)

Abstract

In this article, we propose algorithms for pixelwise deformations of digital convex sets preserving their convexity using the combinatorics on words to identify digital convex sets via their boundary words, namely Lyndon and Christoffel words. The notion of removable and insertable points are used with a geometric strategy for choosing one of those pixels for each deformation step. The worst-case time complexity of each deflation and inflation step, which is the atomic deformation, is also analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acketa, D.M., Žunić, J.: On the maximal number of edges of convex digital polygons included into an m x m-grid. J. Comb. Theor. Ser. A 69, 358–368 (1995)

    Article  MathSciNet  Google Scholar 

  2. Alexander, J.C., Thaler, A.I.: The boundary count of digital pictures. J. ACM 18(1), 105–112 (1971)

    Article  MathSciNet  Google Scholar 

  3. Andrews, G.: A lower bound for the volume of strictly convex bodies with many boundary lattice points. Trans. Am. Math. Soc. 106, 270–279 (1963)

    Article  MathSciNet  Google Scholar 

  4. Berstel, J.: Tracé de droites, fractions continues et morphismes itérés. In: Mots, pp. 298–309. Hermès (1990)

    Google Scholar 

  5. Borel, J.P., Laubie, F.: Quelques mots sur la droite projective réelle. J. de Théorie des Nombres de Bordeaux 5(1), 23–51 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Borel, J.P., Laubie, F.: Construction de mots de Christoffel. Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 313(8), 483–485 (1991)

    Google Scholar 

  7. Brlek, S., Lachaud, J.O., Provençal, X., Reutenauer, C.: Lyndon + christoffel = digitally convex. Pattern Recogn. 42(10), 2239–2246 (2009)

    Article  Google Scholar 

  8. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus, iv. the quotient groups of the lower central series. Ann. Math. 68(1), 81–95 (1958)

    Google Scholar 

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  10. Crombez, L.: Digital convex + unimodular mapping = 8-connected (all points but one 4-connected). In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 164–176. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_11

    Chapter  Google Scholar 

  11. Dulio, P., Frosini, A., Rinaldi, S., Tarsissi, L., Vuillon, L.: First steps in the algorithmic reconstruction of digital convex sets. In: Brlek, S., Dolce, F., Reutenauer, C., Vandomme, É. (eds.) WORDS 2017. LNCS, vol. 10432, pp. 164–176. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66396-8_16

    Chapter  MATH  Google Scholar 

  12. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)

    Article  MathSciNet  Google Scholar 

  13. Eckhardt, U.: Digital lines and digital convexity. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 209–228. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45576-0_13

    Chapter  MATH  Google Scholar 

  14. Freeman, H.: On the Encoding of Arbitrary Geometric Configurations. IRE Trans. Electron. Comput. EC-10(2), 260–268 (1961)

    Google Scholar 

  15. Kim, C.E.: On the Cellular Convexity of Complexes. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-3(6), 617–625 (1981)

    Google Scholar 

  16. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vision Graph. Image Process. 48(3), 357–393 (1989)

    Article  Google Scholar 

  17. Lachaud, J.-O.: An alternative definition for digital convexity. J. Math. Imaging Vision , 1–18 (2022). https://doi.org/10.1007/s10851-022-01076-0

  18. Lothaire, M.: Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  19. Lyndon, R.C.: On burnside’s problem. Trans. Am. Math. Soc. 77(2), 202–215 (1954)

    MathSciNet  MATH  Google Scholar 

  20. Roussillon, T.: An arithmetical characterization of the convex hull of digital straight segments. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 150–161. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09955-2_13

    Chapter  Google Scholar 

  21. Tarsissi, L., Coeurjolly, D., Kenmochi, Y., Romon, P.: Convexity preserving contraction of digital sets. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12047, pp. 611–624. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41299-9_48

    Chapter  Google Scholar 

  22. Tarsissi, L., Kenmochi, Y., Romon, P., Coeurjolly, D., Borel, J.P.: Convexity preserving deformations of digital sets: characterization of removable and insertable points. Technical report, LIGM (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiko Kenmochi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tarsissi, L., Kenmochi, Y., Djerroumi, H., Coeurjolly, D., Romon, P., Borel, JP. (2022). Algorithms for Pixelwise Shape Deformations Preserving Digital Convexity. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19897-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics