Abstract
This paper presents a discrete structure, named adaptive tangential cover (ATC), for studying 3D noisy digital curves. The structure relies mainly on the primitive of blurred segment of width \(\nu \) and on the local noise estimator of meaningful thickness. More precisely, ATC is composed of maximal blurred segments of different widths deduced from the local noise values estimated at each point of the curve. Two applications of ATC for geometric estimators of 3D noisy digital curves are also presented in the paper. The experimental results demonstrate the efficiency of ATC for analyzing 3D irregular noisy curves.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
DGtal: Digital Geometry tools and algorithms library. http://libdgtal.org
Coeurjolly, D., Debled-Rennesson, I., Teytaud, O.: Segmentation and length estimation of 3D discrete curves. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 299–317. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45576-0_18
Coeurjolly, D., Svensson, S.: Estimation of curvature along curves with application to fibres in 3D images of paper. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 247–254. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_34
Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and 4D discrete spaces. IEEE PAMI 31(4), 637–648 (2009)
Debled-Rennesson, I.: Eléments de géométrie discrète vers une etude des structures discrètes bruitées,: habilitation à Diriger des Recherches. Université Henri Poincaré - Nancy I, France (2007)
Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Comput. Graph. 30(1), 30–36 (2006)
Kerautret, B., Lachaud, J.O.: Meaningful scales detection along digital contours for unsupervised local noise estimation. IEEE PAMI 34(12), 2379–2392 (2012)
Kerautret, B., Lachaud, J.O.: Meaningful scales detection: an unsupervised noise detection algorithm for digital contours. Image Process. Line 4, 98–115 (2014)
Kerautret, B., Lachaud, J.O., Said, M.: Meaningful thickness detection on polygonal curve. In: Pattern Recognition Applications and Methods, pp. 372–379 (2012)
Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Analysis and comparative evaluation of discrete tangent estimators. In: Andres, E., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 240–251. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31965-8_23
Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vision Comput. 25(10), 1572–1587 (2007)
Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Fibermesh: designing freeform surfaces with 3D curves. ACM Trans. Graph. 26(3), 41 (2007)
Ngo, P., Debled-Rennesson, I., Kerautret, B., Nasser, H.: Analysis of noisy digital contours with adaptive tangential cover. J. Math. Imaging Vis. 59(1), 123–135 (2017)
Ngo, P., Nasser, H., Debled-Rennesson, I., Kerautret, B.: Adaptive tangential cover for noisy digital contours. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 439–451. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32360-2_34
Nguyen, T.P., Debled-Rennesson, I.: Curvature and torsion estimators for 3D curves. In: Bebis, G., et al. (eds.) ISVC 2008. LNCS, vol. 5358, pp. 688–699. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89639-5_66
Nguyen, T.P., Debled-Rennesson, I.: On the local properties of digital curves. Int. J. Shape Model. 14(2), 105–125 (2008)
Postolski, M., et al.: Reliable airway tree segmentation based on hole closing in bronchial walls, vol. 57, pp. 389–396 (2009)
Postolski, M., Janaszewski, M., Kenmochi, Y., Lachaud, J.O.: Tangent estimation along 3D digital curves. In: International Conference on Pattern Recognition, pp. 2079–2082 (2012)
Reveillès, J.P.: Géométrie discrète, calculs en nombre entiersgorithmique, et al.: thèse d’état. Université Louis Pasteur, Strasbourg (1991)
Xu, B., Chang, W., Sheffer, A., Bousseau, A., McCrae, J., Singh, K.: True2form: 3d curve networks from 2D sketches via selective regularization. ACM Trans. Graph. 33(4) (2014)
Acknowledgment
The authors would like to thank Hugo Ambrozik for his work during a master internship at LORIA which motivated the writing of this article.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Ngo, P., Debled-Rennesson, I. (2022). Tangential Cover for 3D Irregular Noisy Digital Curves. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-19897-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19896-0
Online ISBN: 978-3-031-19897-7
eBook Packages: Computer ScienceComputer Science (R0)