[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tangential Cover for 3D Irregular Noisy Digital Curves

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2022)

Abstract

This paper presents a discrete structure, named adaptive tangential cover (ATC), for studying 3D noisy digital curves. The structure relies mainly on the primitive of blurred segment of width \(\nu \) and on the local noise estimator of meaningful thickness. More precisely, ATC is composed of maximal blurred segments of different widths deduced from the local noise values estimated at each point of the curve. Two applications of ATC for geometric estimators of 3D noisy digital curves are also presented in the paper. The experimental results demonstrate the efficiency of ATC for analyzing 3D irregular noisy curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DGtal: Digital Geometry tools and algorithms library. http://libdgtal.org

  2. Coeurjolly, D., Debled-Rennesson, I., Teytaud, O.: Segmentation and length estimation of 3D discrete curves. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 299–317. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45576-0_18

    Chapter  MATH  Google Scholar 

  3. Coeurjolly, D., Svensson, S.: Estimation of curvature along curves with application to fibres in 3D images of paper. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 247–254. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_34

    Chapter  Google Scholar 

  4. Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and 4D discrete spaces. IEEE PAMI 31(4), 637–648 (2009)

    Article  Google Scholar 

  5. Debled-Rennesson, I.: Eléments de géométrie discrète vers une etude des structures discrètes bruitées,: habilitation à Diriger des Recherches. Université Henri Poincaré - Nancy I, France (2007)

    Google Scholar 

  6. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Comput. Graph. 30(1), 30–36 (2006)

    Article  Google Scholar 

  7. Kerautret, B., Lachaud, J.O.: Meaningful scales detection along digital contours for unsupervised local noise estimation. IEEE PAMI 34(12), 2379–2392 (2012)

    Article  Google Scholar 

  8. Kerautret, B., Lachaud, J.O.: Meaningful scales detection: an unsupervised noise detection algorithm for digital contours. Image Process. Line 4, 98–115 (2014)

    Article  Google Scholar 

  9. Kerautret, B., Lachaud, J.O., Said, M.: Meaningful thickness detection on polygonal curve. In: Pattern Recognition Applications and Methods, pp. 372–379 (2012)

    Google Scholar 

  10. Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Analysis and comparative evaluation of discrete tangent estimators. In: Andres, E., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 240–251. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31965-8_23

    Chapter  MATH  Google Scholar 

  11. Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vision Comput. 25(10), 1572–1587 (2007)

    Article  Google Scholar 

  12. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Fibermesh: designing freeform surfaces with 3D curves. ACM Trans. Graph. 26(3), 41 (2007)

    Article  Google Scholar 

  13. Ngo, P., Debled-Rennesson, I., Kerautret, B., Nasser, H.: Analysis of noisy digital contours with adaptive tangential cover. J. Math. Imaging Vis. 59(1), 123–135 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ngo, P., Nasser, H., Debled-Rennesson, I., Kerautret, B.: Adaptive tangential cover for noisy digital contours. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 439–451. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32360-2_34

    Chapter  MATH  Google Scholar 

  15. Nguyen, T.P., Debled-Rennesson, I.: Curvature and torsion estimators for 3D curves. In: Bebis, G., et al. (eds.) ISVC 2008. LNCS, vol. 5358, pp. 688–699. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89639-5_66

    Chapter  Google Scholar 

  16. Nguyen, T.P., Debled-Rennesson, I.: On the local properties of digital curves. Int. J. Shape Model. 14(2), 105–125 (2008)

    Article  MathSciNet  Google Scholar 

  17. Postolski, M., et al.: Reliable airway tree segmentation based on hole closing in bronchial walls, vol. 57, pp. 389–396 (2009)

    Google Scholar 

  18. Postolski, M., Janaszewski, M., Kenmochi, Y., Lachaud, J.O.: Tangent estimation along 3D digital curves. In: International Conference on Pattern Recognition, pp. 2079–2082 (2012)

    Google Scholar 

  19. Reveillès, J.P.: Géométrie discrète, calculs en nombre entiersgorithmique, et al.: thèse d’état. Université Louis Pasteur, Strasbourg (1991)

    Google Scholar 

  20. Xu, B., Chang, W., Sheffer, A., Bousseau, A., McCrae, J., Singh, K.: True2form: 3d curve networks from 2D sketches via selective regularization. ACM Trans. Graph. 33(4) (2014)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Hugo Ambrozik for his work during a master internship at LORIA which motivated the writing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ngo, P., Debled-Rennesson, I. (2022). Tangential Cover for 3D Irregular Noisy Digital Curves. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19897-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics