Abstract
We present a method that learns neural shadow fields, which are neural scene representations that are only learnt from the shadows present in the scene. While traditional shape-from-shadow (SfS) algorithms reconstruct geometry from shadows, they assume a fixed scanning setup and fail to generalize to complex scenes. Neural rendering algorithms, on the other hand, rely on photometric consistency between RGB images, but largely ignore physical cues such as shadows, which have been shown to provide valuable information about the scene. We observe that shadows are a powerful cue that can constrain neural scene representations to learn SfS, and even outperform NeRF to reconstruct otherwise hidden geometry. We propose a graphics-inspired differentiable approach to render accurate shadows with volumetric rendering, predicting a shadow map that can be compared to the ground truth shadow. Even with just binary shadow maps, we show that neural rendering can localize the object and estimate coarse geometry. Our approach reveals that sparse cues in images can be used to estimate geometry using differentiable volumetric rendering. Moreover, our framework is highly generalizable and can work alongside existing 3D reconstruction techniques that otherwise only use photometric consistency. Code is available here.
K. Tiwary and T. Klinghoffer—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Besl, P., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). https://doi.org/10.1109/34.121791
Bobrow, D.G.: Comment on “Numerical shape from shading and occluding boundaries", pp. 89–94. The MIT Press (1994)
Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.P.: Nerd: neural reflectance decomposition from image collections. In: IEEE International Conference on Computer Vision (ICCV) (2021)
Chang, A.X., et al.: ShapeNet: an Information-Rich 3D Model Repository. Technical report arXiv:1512.03012 [cs.GR], Stanford University – Princeton University – Toyota Technological Institute at Chicago (2015)
Falcon, W., et al.: Pytorch lightning. GitHub. Note (2019): https://github.com/PyTorchLightning/pytorch-lightning 3
Guo, Y., Kang, D., Bao, L., He, Y., Zhang, S.: Nerfren: neural radiance fields with reflections. CoRR abs/2111.15234 (2021). https://arxiv.org/abs/2111.15234
Henley, C., Maeda, T., Swedish, T., Raskar, R.: Imaging behind occluders using two-bounce light. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 573–588. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_34
Kato, H., Ushiku, Y., Harada, T.: Neural 3d mesh renderer. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Landabaso, J.L., Pardàs, M., Casas, J.R.: Shape from inconsistent silhouette. Comput. Vis. Image Underst. 112, 210–224 (2008)
Li, T.M., Aittala, M., Durand, F., Lehtinen, J.: Differentiable monte carlo ray tracing through edge sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37(6), 222:1–222:11 (2018)
Liu, R., Menon, S., Mao, C., Park, D., Stent, S., Vondrick, C.: Shadows shed light on 3d objects. arXiv e-prints pp. arXiv-2206 (2022)
Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3d reasoning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7708–7717 (2019)
Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. ACM Trans. Graph. 38(4), 65:1–65:14 (2019)
Loper, M.M., Black, M.J.: OpenDR: an approximate differentiable renderer. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_11
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. ACM Siggraph Comput. Graph. 21(4), 163–169 (1987)
Martin, W.N., Aggarwal, J.K.: Volumetric descriptions of objects from multiple views. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-5(2), 150–158 (1983). https://doi.org/10.1109/TPAMI.1983.4767367
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Niemeyer, M., Geiger, A.: GIRAFFE: representing scenes as compositional generative neural feature fields (2020). https://arxiv.org/abs/2011.12100
Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: Learning implicit 3D representations without 3D supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: Learning implicit 3d representations without 3d supervision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: a retargetable forward and inverse renderer. ACM Trans. Graph. (TOG) 38(6), 1–17 (2019)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: Learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 165–174 (2019)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Adv. Neural Inf. Process. Syst. 32, pp. 8024–8035. Curran Associates, Inc. (2019). https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Quei-An, C.: Nerf_pl: a pytorch-lightning implementation of nerf (2020). https://github.com/kwea123/nerf_pl/
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation (2015)
Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: CVPR (2022)
Savarese, S., Rushmeier, H., Bernardini, F., Perona, P.: Shadow carving. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 1, pp. 190–197. IEEE (2001)
Schönberger, J.L., Frahm, J.-M.: Structure-from-Motion Revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: Deepvoxels: learning persistent 3d feature embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2437–2446 (2019)
Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.: Nerv: neural reflectance and visibility fields for relighting and view synthesis (2020)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains (2020)
Tulsiani, S., Efros, A.A., Malik, J.: Multi-view consistency as supervisory signal for learning shape and pose prediction. In: Computer Vision and Pattern Regognition (CVPR) (2018)
Velten, A., Willwacher, T., Gupta, O., Veeraraghavan, A., Bawendi, M.G., Raskar, R.: Recovering threedimensional shape around a corner using ultrafast time-of-flight imaging. Nature, p. 745 (2012)
Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF: structured view-dependent appearance for neural radiance fields. arXiv (2021)
Vogel, O., Valgaerts, L., Breuß, M., Weickert, J.: Making shape from shading work for real-world images. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 191–200. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03798-6_20
Williams, L.: Casting curved shadows on curved surfaces. In: Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, pp. 270–274 (1978)
Yamazaki, S., Srinivasa Narasimhan, G., Baker, S., Kanade, T.: The theory and practice of coplanar shadowgram imaging for acquiring visual hulls of intricate objects. Int. J. Comput. Vis. 81, March 2009. https://doi.org/10.1007/s11263-008-0170-4
Ye, Y., Tulsiani, S., Gupta, A.: Shelf-supervised mesh prediction in the wild. In: Computer Vision and Pattern Recognition (CVPR) (2021)
Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: ICCV (2021)
Zhang, J.Y., Yang, G., Tulsiani, S., Ramanan, D.: NeRS: neural reflectance surfaces for sparse-view 3d reconstruction in the wild. In: Conference on Neural Information Processing Systems (2021)
Zhang, R., Tsai, P.S., Cryer, J., Shah, M.: Shape-from-shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 690–706 (1999). https://doi.org/10.1109/34.784284
Zheng, Q., Chellappa, R.: Estimation of illuminant direction, albedo, and shape from shading. IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 680–702 (1991). https://doi.org/10.1109/34.85658
Acknowledgement
This research was supported by the SMART Contract IARPA Grant #2021-20111000004. We would also like to thank Systems & Technology Research (STR). In addition, the authors would also like to thank Professor Voicu Popescu (Purdue University) for being so generous with his time and the valuable discussions that came from our meetings.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tiwary, K., Klinghoffer, T., Raskar, R. (2022). Towards Learning Neural Representations from Shadows. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-19827-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19826-7
Online ISBN: 978-3-031-19827-4
eBook Packages: Computer ScienceComputer Science (R0)