[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

FLEX: Extrinsic Parameters-free Multi-view 3D Human Motion Reconstruction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

The increasing availability of video recordings made by multiple cameras has offered new means for mitigating occlusion and depth ambiguities in pose and motion reconstruction methods. Yet, multi-view algorithms strongly depend on camera parameters, particularly on relative transformations between the cameras. Such a dependency becomes a hurdle once shifting to dynamic capture in uncontrolled settings. We introduce FLEX  (Free muLti-view rEconstruXion), an end-to-end extrinsic parameter-free multi-view model. FLEX is extrinsic parameter-free (dubbed ep-free) in the sense that it does not require extrinsic camera parameters. Our key idea is that the 3D angles between skeletal parts, as well as bone lengths, are invariant to the camera position. Hence, learning 3D rotations and bone lengths rather than locations allows for predicting common values for all camera views. Our network takes multiple video streams, learns fused deep features through a novel multi-view fusion layer, and reconstructs a single consistent skeleton with temporally coherent joint rotations. We demonstrate quantitative and qualitative results on three public data sets, and on multi-person synthetic video streams captured by dynamic cameras. We compare our model to state-of-the-art methods that are not ep-free and show that in the absence of camera parameters, we outperform them by a large margin while obtaining comparable results when camera parameters are available. Code, trained models, and other materials are available on https://briang13.github.io/FLEX.

B. Gordon and S. Raab—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adobe Systems Inc.: Mixamo (2018). http://www.mixamo.com/

  2. Bachmann, R., Spörri, J., Fua, P., Rhodin, H.: Motion capture from pan-tilt cameras with unknown orientation. In: 2019 International Conference on 3D Vision (3DV), pp. 308–317. IEEE, IEEE Computer Society, Washington, DC, USA (2019)

    Google Scholar 

  3. Belagiannis, V., Amin, S., Andriluka, M., Schiele, B., Navab, N., Ilic, S.: 3D pictorial structures for multiple human pose estimation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1669–1676 (2014). https://doi.org/10.1109/CVPR.2014.216

  4. Belagiannis, V., Amin, S., Andriluka, M., Schiele, B., Navab, N., Ilic, S.: 3D pictorial structures revisited: multiple human pose estimation. IEEE Trans. Patt. Anal. Mach. Intell. 38, 1929–1942 (2016). https://doi.org/10.1109/TPAMI.2015.2509986

  5. Bergtholdt, M., Kappes, J., Schmidt, S., Schnörr, C.: A study of parts-based object class detection using complete graphs. Int. J. Comput. Vision 87, 93–117 (2010). https://doi.org/10.1007/s11263-009-0209-1

  6. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools 120; 122–125 (2000)

    Google Scholar 

  7. Burenius, M., Sullivan, J., Carlsson, S.: 3D pictorial structures for multiple view articulated pose estimation. In: Proceedings/CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3618–3625. IEEE Computer Society, Washington, DC, USA, June 2013. https://doi.org/10.1109/CVPR.2013.464

  8. Cao, Z., Hidalgo, G., Simon, T., Wei, S., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2018, vol. 43, pp. 172–186. IEEE Computer Society, Washington, DC, USA (2018)

    Google Scholar 

  9. Ionescu, C., Fuxin Li, C.S.: Latent structured models for human pose estimation. In: International Conference on Computer Vision (2011)

    Google Scholar 

  10. Chen, X., Lin, K.Y., Liu, W., Qian, C., Wang, X., Lin, L.: Weakly-supervised discovery of geometry-aware representation for 3d human pose estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10887–10896 (2019)

    Google Scholar 

  11. Chen, X., Wei, P., Lin, L.: Deductive learning for weakly-supervised 3D human pose estimation via uncalibrated cameras. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1089–1096 (2021)

    Google Scholar 

  12. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7103–7112. IEEE Computer Society, Washington, DC, USA (2018)

    Google Scholar 

  13. Cheng, Y., Yang, B., Wang, B., Tan, R.T.: 3D human pose estimation using spatio-temporal networks with explicit occlusion training. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10631–10638 (2020)

    Google Scholar 

  14. Choi, H., Moon, G., Lee, K.M.: Beyond static features for temporally consistent 3d human pose and shape from a video. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  15. Chu, H., Lee, J.H., Lee, Y.C., Hsu, C.H., Li, J.D., Chen, C.S.: Part-aware measurement for robust multi-view multi-human 3D pose estimation and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1472–1481, June 2021

    Google Scholar 

  16. Chu, W.T., Pan, Z.W.: Semi-supervised 3d human pose estimation by jointly considering temporal and multiview information. IEEE Access 8, 226974–226981 (2020). https://doi.org/10.1109/ACCESS.2020.3045794

  17. CMU: CMU graphics lab motion capture database, May 2019. http://mocap.cs.cmu.edu/

  18. Community, B.O.: Blender - a 3D Modelling and Rendering Package. Blender Foundation, Stichting Blender Foundation, Amsterdam (2018). http://www.blender.org/

  19. Dong, J., Jiang, W., Huang, Q., Bao, H., Zhou, X.: Fast and robust multi-person 3D pose estimation from multiple views. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7792–7801 (2019)

    Google Scholar 

  20. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: ICCV, pp 2334–2343. IEEE Computer Society, Washington, DC, USA (2017)

    Google Scholar 

  21. Fang, H.S., Xu, Y., Wang, W., Liu, X., Zhu, S.C.: Learning pose grammar to encode human body configuration for 3d pose estimation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  22. Habermann, M., Xu, W., Zollhofer, M., Pons-Moll, G., Theobalt, C.: DeepCap: Monocular human performance capture using weak supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5052–5063 (2020)

    Google Scholar 

  23. Habibie, I., Xu, W., Mehta, D., Pons-Moll, G., Theobalt, C.: In the wild human pose estimation using explicit 2d features and intermediate 3D representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10905–10914. IEEE Computer Society, Washington, DC, USA (2019)

    Google Scholar 

  24. He, Y., Yan, R., Fragkiadaki, K., Yu, S.I.: Epipolar transformers. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7776–7785 (2020)

    Google Scholar 

  25. Hossain, M.R.I., Little, J.J.: Exploiting temporal information for 3D human pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 69–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_5

    Chapter  Google Scholar 

  26. Hu, W., Zhang, C., Zhan, F., Zhang, L., Wong, T.T.: Conditional directed graph convolution for 3D Human pose estimation, In: ACM Multimedia Conference, MM 2021, pp. 602–611. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3474085.3475219

  27. Huang, F., Zeng, A., Liu, M., Lai, Q., Xu, Q.: DeepFuse: an IMU-aware network for real-time 3d human pose estimation from multi-view image. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 418–427. IEEE Computer Society, Los Alamitos, CA, USA, March 2020. https://doi.org/10.1109/WACV45572.2020.9093526, https://doi.org/10.1109/WACV45572.2020.9093526

  28. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1539 (2014)

    Google Scholar 

  29. Iskakov, K., Burkov, E., Lempitsky, V.S., Malkov, Y.: Learnable triangulation of human pose. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7717–7726 (2019)

    Google Scholar 

  30. Kadkhodamohammadi, A., Padoy, N.: A generalizable approach for multi-view 3D human pose regression. Mach. Vis. Appl. 32(1), 1–14 (2021)

    Article  Google Scholar 

  31. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, pp. 7122–7131. IEEE Computer Society, Washington, DC, USA (2018). https://doi.org/10.1109/CVPR.2018.00744

  32. Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  33. Kazemi, V., Burenius, M., Azizpour, H., Sullivan, J.: Multi-view body part recognition with random forests. In: BMVC 2013 - Electronic Proceedings of the British Machine Vision Conference 2013. BMVA, UK (2013). https://doi.org/10.5244/C.27.48

  34. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. ACM Comput. Surv. 54, 1–41 (2021). https://doi.org/10.1145/3505244

  35. Kissos, I., Fritz, L., Goldman, M., Meir, O., Oks, E., Kliger, M.: Beyond weak perspective for monocular 3D human pose estimation. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12536, pp. 541–554. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66096-3_37

    Chapter  Google Scholar 

  36. Kocabas, M., Athanasiou, N., Black, M.J.: VIBE: video inference for human body pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5253–5263 (2020)

    Google Scholar 

  37. Kocabas, M., Karagoz, S., Akbas, E.: Self-supervised learning of 3D human pose using multi-view geometry. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1077–1086 (2019)

    Google Scholar 

  38. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE International Conference on Computer Vision, ICCV 2019, pp. 2252–2261. IEEE Computer Society, Washington, DC, USA (2019)

    Google Scholar 

  39. Li, S., Chan, A.: 3D human pose estimation from monocular images with deep convolutional neural network. Appl. Sci. 10(15), 5186 (2014). https://doi.org/10.1007/978-3-319-16808-1_23

  40. Li, W., Liu, H., Ding, R., Liu, M., Wang, P., Yang, W.: Exploiting temporal contexts with strided transformer for 3D human pose estimation. IEEE Trans. Multim, Early Access (2021)

    Google Scholar 

  41. Lin, K., Wang, L., Liu, Z.: End-to-end human pose and mesh reconstruction with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1954–1963 (2021)

    Google Scholar 

  42. Liu, D., Zhao, Z., Wang, X., Hu, Y., Zhang, L., Huang, T.: Improving 3D human pose estimation via 3D part affinity fields. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1004–1013. IEEE, IEEE Computer Society, Washington, DC, USA (2019)

    Google Scholar 

  43. Liu, R., Shen, J., Wang, H., Chen, C., Cheung, S.c., Asari, V.: Attention mechanism exploits temporal contexts: Real-time 3D human pose reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5064–5073. IEEE Computer Society, Washington, DC, USA (2020)

    Google Scholar 

  44. Llopart, A.: Liftformer: 3D human pose estimation using attention models. CoRR abs/2009.00348 (2020). ’arxiv.org/abs/2009.00348’

    Google Scholar 

  45. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 34(6), 248:1–248:16 (2015)

    Google Scholar 

  46. Luo, Z., Golestaneh, S.A., Kitani, K.M.: 3D human motion estimation via motion compression and refinement. In: Proceedings of the Asian Conference on Computer Vision (ACCV), November 2020

    Google Scholar 

  47. Ma, H., et al.: Transfusion: cross-view fusion with transformer for 3D human pose estimation. In: British Machine Vision Conference (2021)

    Google Scholar 

  48. Mao, W., Liu, M., Salzmann, M., Li, H.: Learning trajectory dependencies for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  49. von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 614–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_37

    Chapter  Google Scholar 

  50. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3d human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2640–2649 (2017)

    Google Scholar 

  51. Mehta, D., Sotnychenko, O., Mueller, F., Xu, W., Elgharib, M., Fua, P., Seidel, H.P., Rhodin, H., Pons-Moll, G., Theobalt, C.: XNect: real-time multi-person 3d motion capture with a single RGB camera. ACM Transactions on Graphics (TOG) 39(4), 11–82 (2020)

    Article  Google Scholar 

  52. Ohashi, T., Ikegami, Y., Yamamoto, K., Takano, W., Nakamura, Y.: Video motion capture from the part confidence maps of multi-camera images by spatiotemporal filtering using the human skeletal model. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4226–4231 October 2018. https://doi.org/10.1109/IROS.2018.8593867

  53. Pavlakos, G., Malik, J., Kanazawa, A.: Human mesh recovery from multiple shots. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1485–1495, June 2022

    Google Scholar 

  54. Pavlakos, G., Zhou, X., Daniilidis, K.: Ordinal depth supervision for 3D human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7307–7316. IEEE Computer Society, Washington, DC, USA (2018)

    Google Scholar 

  55. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 1263–1272. IEEE Computer Society, Washington, DC, USA (2017)

    Google Scholar 

  56. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7753–7762 (2019)

    Google Scholar 

  57. Pavllo, D., Grangier, D., Auli, M.: QuaterNet: a quaternion-based recurrent model for human motion. In: British Machine Vision Conference (BMVC) (2018)

    Google Scholar 

  58. Qiu, H., Wang, C., Wang, J., Wang, N., Zeng, W.: Cross view fusion for 3d human pose estimation. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4341–4350 (2019)

    Google Scholar 

  59. Reddy, N., Guigues, L., Pischulini, L., Eledath, J., Narasimhan, S.G.: TesseTrack: end-to-end learnable multi-person articulated 3D pose tracking. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15185–15195 (2021)

    Google Scholar 

  60. Rhodin, H., et al.: Learning monocular 3D human pose estimation from multi-view images. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8437–8446 (2018)

    Google Scholar 

  61. Rhodin, H., et al.: Learning monocular 3D human pose estimation from multi-view images. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8437–8446 (2018)

    Google Scholar 

  62. Sarafianos, N., Boteanu, B., Ionescu, B., Kakadiaris, I.A.: 3D human pose estimation: a review of the literature and analysis of covariates. Comput. Vis. Image Underst. 152(C), 1–20 (2016). https://doi.org/10.1016/j.cviu.2016.09.002

  63. Sárándi, I., Linder, T., Arras, K.O., Leibe, B.: Metric-scale truncation-robust heatmaps for 3D human pose estimation. In: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 407–414 (2020)

    Google Scholar 

  64. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  65. Shan, W., Lu, H., Wang, S., Zhang, X., Gao, W.: Improving robustness and accuracy via relative information encoding in 3d human pose estimation. In: Proceedings of the 29th ACM International Conference on Multimedia (2021)

    Google Scholar 

  66. Shi, M., et al.: MotioNet: 3D human motion reconstruction from monocular video with skeleton consistency. ACM Trans. Graph. 40(1), 1–15 (2020)

    Article  Google Scholar 

  67. Shimada, S., Golyanik, V., Xu, W., Pérez, P., Theobalt, C.: Neural monocular 3D human motion capture with physical awareness. ACM Trans. Graph. 40(4) (2021). .https://doi.org/10.1145/3450626.3459825, https://doi.org/10.1145/3450626.3459825

  68. Skycam: http://www.skycam.tv/

  69. Sun, J., Wang, M., Zhao, X., Zhang, D.: Multi-view pose generator based on deep learning for monocular 3D human pose estimation. Symmetry 12(7), 1116 (2020)

    Google Scholar 

  70. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 529–545 (2018)

    Google Scholar 

  71. Takahashi, K., Mikami, D., Isogawa, M., Kimata, H.: Human pose as calibration pattern: 3D human pose estimation with multiple unsynchronized and uncalibrated cameras. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1856–18567 (2018). https://doi.org/10.1109/CVPRW.2018.00230

  72. Tekin, B., Katircioglu, I., Salzmann, M., Lepetit, V., Fua, P.: Structured prediction of 3D human pose with deep neural networks. In: British Machine Vision Conference (BMVC) (2016)

    Google Scholar 

  73. Tome, D., Toso, M., Agapito, L., Russell, C.: Rethinking pose in 3D multi-stage refinement and recovery for markerless motion capture. In: 2018 International Conference on 3D Vision (3DV), pp. 474–483. IEEE, IEEE Computer Society, Washington, DC, USA (2018)

    Google Scholar 

  74. Tu, H., Wang, C., Zeng, W.: VoxelPose: towards multi-camera 3d human pose estimation in wild environment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 197–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_12

    Chapter  Google Scholar 

  75. Usman, B., Tagliasacchi, A., Saenko, K., Sud, A.: MetaPose: fast 3D pose from multiple views without 3D supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6759–6770, June 2022

    Google Scholar 

  76. Vo, M.P., Yumer, E., Sunkavalli, K., Hadap, S., Sheikh, Y., Narasimhan, S.G.: Self-supervised multi-view person association and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 43, 2794–2808 (2021)

    Google Scholar 

  77. Wandt, B., Rudolph, M., Zell, P., Rhodin, H., Rosenhahn, B.: CanonPose: self-supervised monocular 3D human pose estimation in the wild. In: Computer Vision and Pattern Recognition (CVPR), June 2021

    Google Scholar 

  78. Wang, D., et al.: Multi-view 3d reconstruction with transformer. In: Proceeding of the IEEE International Conference on Computer Vision, ICCV2021, pp. 5722–5731 (2021)

    Google Scholar 

  79. Wang, J., Yan, S., Xiong, Y., Lin, D.: Motion Guided 3D pose estimation from videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 764–780. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_45

    Chapter  Google Scholar 

  80. Yoshiyasu, Y., Sagawa, R., Ayusawa, K., Murai, A.: Skeleton transformer networks: 3D human pose and skinned mesh from single RGB image. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 485–500. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_30

    Chapter  Google Scholar 

  81. Wang, D., et al.: Multi-view 3D reconstruction with transformer. In: Proceeding of the IEEE International Conference on Computer Vision, ICCV2021, pp. 5722–5731(2021)

    Google Scholar 

  82. Zhou, X., Sun, X., Zhang, W., Liang, S., Wei, Y.: Deep kinematic pose regression. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 186–201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_17

    Chapter  Google Scholar 

  83. Zhu, L., Rematas, K., Curless, B., Seitz, S.M., Kemelmacher-Shlizerman, I.: Reconstructing NBA players. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 177–194. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_11

    Chapter  Google Scholar 

  84. Zins, P., Xu, Y., Boyer, E., Wuhrer, S., Tung, T.: Data-driven 3D reconstruction of dressed humans from sparse views. In: 3DV (2021)

    Google Scholar 

Download references

Acknowledgements

This research would not have been possible without the exceptional support of Mingyi Shi. We are grateful to Kfir Aberman and Yuval Alaluf for reviewing earlier versions of the manuscript, and to Yuval Alaluf and Shahaf Goren for contributing to FLEX’s video clip. This work was supported in part by the Israel Science Foundation (grants no. 2366/16 and 2492/20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Gordon .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8575 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gordon, B., Raab, S., Azov, G., Giryes, R., Cohen-Or, D. (2022). FLEX: Extrinsic Parameters-free Multi-view 3D Human Motion Reconstruction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19827-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19826-7

  • Online ISBN: 978-3-031-19827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics