[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Unsupervised Segmentation in Real-World Images via Spelke Object Inference

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13689))

Included in the following conference series:

Abstract

Self-supervised, category-agnostic segmentation of real-world images is a challenging open problem in computer vision. Here, we show how to learn static grouping priors from motion self-supervision by building on the cognitive science concept of a Spelke Object: a set of physical stuff that moves together. We introduce the Excitatory-Inhibitory Segment Extraction Network (EISEN), which learns to extract pairwise affinity graphs for static scenes from motion-based training signals. EISEN then produces segments from affinities using a novel graph propagation and competition network. During training, objects that undergo correlated motion (such as robot arms and the objects they move) are decoupled by a bootstrapping process: EISEN explains away the motion of objects it has already learned to segment. We show that EISEN achieves a substantial improvement in the state of the art for self-supervised image segmentation on challenging synthetic and real-world robotics datasets.

D. L. K. Yamins and D. M. Bear—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More formally, two pieces of stuff are considered to be in the same Spelke object if and only if, under the application of any sequence of actions that causes sustained motion of one of the pieces of stuff, the magnitude of the motion that the other piece of stuff experiences relative to the first piece is approximately zero compared to the magnitude of overall motion. Natural action groups arise from the set of all force applications exertable by specific physical actuator, such as (e.g.) a pair of human hands or a robotic gripper.

  2. 2.

    If scenes are assumed to have at most one independent motion source, these are simply the pairs with \(\mathcal {I}(a) == \mathcal {I}(b) == 1\). This often holds in robotics scenes (and is perhaps the norm in a baby’s early visual experience) but not in many standard datasets (e.g. busy street scenes.) We therefore handle the more general case.

References

  1. Arora, T., Li, L.E., Cai, M.B.: Learning to perceive objects by prediction. In: SVRHM 2021 Workshop@ NeurIPS (2021)

    Google Scholar 

  2. Bear, D., et al.: Learning physical graph representations from visual scenes. In: Advances in Neural Information Processing Systems 33, pp. 6027–6039 (2020)

    Google Scholar 

  3. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  5. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  6. Cheng, B., et al.: Panoptic-DeepLab: a simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12475–12485 (2020)

    Google Scholar 

  7. Dorfman, N., Harari, D., Ullman, S.: Learning to perceive coherent objects. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 35 (2013)

    Google Scholar 

  8. Du, Y., Smith, K., Ulman, T., Tenenbaum, J., Wu, J.: Unsupervised discovery of 3D physical objects from video. arXiv preprint arXiv:2007.12348 (2020)

  9. Ebert, F., et al.: Bridge data: boosting generalization of robotic skills with cross-domain datasets. arXiv preprint arXiv:2109.13396 (2021)

  10. Follmann, P., Böttger, T., Härtinger, P., König, R., Ulrich, M.: MVTec D2S: densely segmented supermarket dataset. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 581–597. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_35

    Chapter  Google Scholar 

  11. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  Google Scholar 

  12. Gan, C., et al.: ThreeDWorld: a platform for interactive multi-modal physical simulation. arXiv preprint arXiv:2007.04954 (2020)

  13. Gao, N., et al.: SSAP: single-shot instance segmentation with affinity pyramid. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 642–651 (2019)

    Google Scholar 

  14. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  15. Greff, K., et al.: Multi-object representation learning with iterative variational inference. In: International Conference on Machine Learning, pp. 2424–2433. PMLR (2019)

    Google Scholar 

  16. Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12(10), 103018 (2010)

    Google Scholar 

  17. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  19. Hinton, G.: How to represent part-whole hierarchies in a neural network. arXiv preprint arXiv:2102.12627 (2021)

  20. Kabra, R., et al.: SIMONe: view-invariant, temporally-abstracted object representations via unsupervised video decomposition. In: Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  21. Kipf, T., et al.: Conditional object-centric learning from video. arXiv preprint arXiv:2111.12594 (2021)

  22. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  23. Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: looking wider to see better. arXiv preprint arXiv:1506.04579 (2015)

  24. Locatello, F., et al.: Object-centric learning with slot attention. In: Advances in Neural Information Processing Systems 33, pp. 11525–11538 (2020)

    Google Scholar 

  25. Luo, L., Xiong, Y., Liu, Y., Sun, X.: Adaptive gradient methods with dynamic bound of learning rate. arXiv preprint arXiv:1902.09843 (2019)

  26. Peng, B., Zhang, L., Zhang, D.: A survey of graph theoretical approaches to image segmentation. Pattern Recogn. 46(3), 1020–1038 (2013)

    Article  Google Scholar 

  27. Perazzi, F., et al.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–732 (2016)

    Google Scholar 

  28. Roelfsema, P.R., et al.: Cortical algorithms for perceptual grouping. Ann. Rev. Neurosci. 29(1), 203–227 (2006)

    Article  Google Scholar 

  29. Ross, M.G., Kaelbling, L.P.: Segmentation according to natural examples: learning static segmentation from motion segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 661–676 (2008)

    Article  Google Scholar 

  30. Sabour, S., Tagliasacchi, A., Yazdani, S., Hinton, G., Fleet, D.J.: Unsupervised part representation by flow capsules. In: International Conference on Machine Learning, pp. 9213–9223. PMLR (2021)

    Google Scholar 

  31. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  32. Siméoni, O., et al.: Localizing objects with self-supervised transformers and no labels. arXiv preprint arXiv:2109.14279 (2021)

  33. Spelke, E.S.: Principles of object perception. Cogn. Sci. 14(1), 29–56 (1990)

    Article  Google Scholar 

  34. Tangemann, M., et al.: Unsupervised object learning via common fate. arXiv preprint arXiv:2110.06562 (2021)

  35. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  36. Todorovic, D.: Gestalt principles. Scholarpedia 3(12), 5345 (2008)

    Article  Google Scholar 

  37. Tsao, T., Tsao, D.Y.: A topological solution to object segmentation and tracking. arXiv preprint arXiv:2107.02036 (2021)

  38. Ullman, S., Harari, D., Dorfman, N.: From simple innate biases to complex visual concepts. Proc. Natl. Acad. Sci. 109(44), 18215–18220 (2012)

    Article  Google Scholar 

  39. Wang, Y., Shen, X., Hu, S., Yuan, Y., Crowley, J., Vaufreydaz, D.: Self-supervised transformers for unsupervised object discovery using normalized cut. arXiv preprint arXiv:2202.11539 (2022)

  40. Yang, C., Lamdouar, H., Lu, E., Zisserman, A., Xie, W.: Self-supervised video object segmentation by motion grouping. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7177–7188 (2021)

    Google Scholar 

  41. Zhou, H., Friedman, H.S., Von Der Heydt, R.: Coding of border ownership in monkey visual cortex. J. Neurosci. 20(17), 6594–6611 (2000)

    Article  Google Scholar 

  42. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgements

J.B.T is supported by NSF Science Technology Center Award CCF-1231216. D.L.K.Y is supported by the NSF (RI 1703161 and CAREER Award 1844724) and hardware donations from the NVIDIA Corporation. J.B.T. and D.L.K.Y. are supported by the DARPA Machine Common Sense program. J.W. is in part supported by Stanford HAI, Samsung, ADI, Salesforce, Bosch, and Meta. D.M.B. is supported by a Wu Tsai Interdisciplinary Scholarship and is a Biogen Fellow of the Life Sciences Research Foundation. We thank Chaofei Fan and Drew Linsley for early discussions about EISEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1086 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H. et al. (2022). Unsupervised Segmentation in Real-World Images via Spelke Object Inference. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19818-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19817-5

  • Online ISBN: 978-3-031-19818-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics