[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Local Color Distributions Prior for Image Enhancement

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13678))

Included in the following conference series:

Abstract

Existing image enhancement methods are typically designed to address either the over- or under-exposure problem in the input image. When the illumination of the input image contains both over- and under-exposure problems, these existing methods may not work well. We observe from the image statistics that the local color distributions (LCDs) of an image suffering from both problems tend to vary across different regions of the image, depending on the local illuminations. Based on this observation, we propose in this paper to exploit these LCDs as a prior for locating and enhancing the two types of regions (i.e., over-/under-exposed regions). First, we leverage the LCDs to represent these regions, and propose a novel local color distribution embedded (LCDE) module to formulate LCDs in multi-scales to model the correlations across different regions. Second, we propose a dual-illumination learning mechanism to enhance the two types of regions. Third, we construct a new dataset to facilitate the learning process, by following the camera image signal processing (ISP) pipeline to render standard RGB images with both under-/over-exposures from raw data. Extensive experiments demonstrate that the proposed method outperforms existing state-of-the-art methods quantitatively and qualitatively. Codes and dataset are in https://hywang99.github.io/lcdpnet/.

K. Xu and R.W.H. Lau—Joint corresponding authors. This work was led by Rynson Lau.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afifi, M., Derpanis, K.G., Ommer, B., Brown, M.S.: Learning multi-scale photo exposure correction. In: CVPR (2021)

    Google Scholar 

  2. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: CVPR (2011)

    Google Scholar 

  3. Cai, B., Xu, X., Guo, K., Jia, K., Hu, B., Tao, D.: A joint intrinsic-extrinsic prior model for retinex. In: ICCV (2017)

    Google Scholar 

  4. Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. IEEE TIP 27(4), 2049–2062 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: CVPR (2018)

    Google Scholar 

  6. Chen, J., Adams, A., Wadhwa, N., Hasinoff, S.: Bilateral guided upsampling. ACM TOG 35(6), 1–8 (2016)

    Article  Google Scholar 

  7. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM TOG 26(3), 103-es (2007)

    Google Scholar 

  8. Chen, J., Wang, X., Guo, Z., Zhang, X., Sun, J.: Dynamic region-aware convolution. In: CVPR (2021)

    Google Scholar 

  9. Chen, L., Lu, X., Zhang, J., Chu, X., Chen, C.: HINet: half instance normalization network for image restoration. In: CVPR Workshops (2021)

    Google Scholar 

  10. Chen, W., Wenjing, W., Wenhan, Y., Jiaying, L.: Deep Retinex decomposition for low-light enhancement. In: BMVC (2018)

    Google Scholar 

  11. Chen, Y., Wang, Y., Kao, M., Chuang, Y.: Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs. In: CVPR (2018)

    Google Scholar 

  12. Fu, X., Zeng, D., Huang, Y., Zhang, X., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: CVPR (2016)

    Google Scholar 

  13. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. In: ACM TOG (2017)

    Google Scholar 

  14. Guo, C., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: CVPR (2020)

    Google Scholar 

  15. Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE TIP 26(2), 982–993 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Hwang, S.J., Kapoor, A., Kang, S.B.: Context-based automatic local image enhancement. In: ECCV (2012)

    Google Scholar 

  17. Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: DSLR-quality photos on mobile devices with deep convolutional networks. In: ICCV (2017)

    Google Scholar 

  18. Jiang, Y., et al.: EnlightenGAN: deep light enhancement without paired supervision. IEEE TIP 30, 2340–2349 (2021)

    Google Scholar 

  19. Kaufman, L., Lischinski, D., Werman, M.: Content-aware automatic photo enhancement. In: Computer Graphics Forum (2012)

    Google Scholar 

  20. Kingma, P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  21. Liu, Y.L., et al.: Single-image HDR reconstruction by learning to reverse the camera pipeline. In: CVPR (2020)

    Google Scholar 

  22. Moran, S., Marza, P., McDonagh, S., Parisot, S., Slabaugh, G.G.: DeepLPF: deep local parametric filters for image enhancement. In: CVPR (2020)

    Google Scholar 

  23. Park, J., Lee, J.Y., Yoo, D., So Kweon, I.: Distort-and-recover: color enhancement using deep reinforcement learning. In: CVPR (2018)

    Google Scholar 

  24. Paszke, A., et al.: Automatic differentiation in pytorch. In: NeurIPS Workshops (2017)

    Google Scholar 

  25. Pizer, S., et al.: Adaptive histogram equalization and its variations. Graph. Image Process. Comput. Vis. 39(3), 355–368 (1987)

    Article  Google Scholar 

  26. Ren, W., et al.: Low-light image enhancement via a deep hybrid network. IEEE TIP 28(9), 4364–4375 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Sig. Process. Syst. Sig. Image Video Technol. 38(1), 35–44 (2004). https://doi.org/10.1023/B:VLSI.0000028532.53893.82

    Article  Google Scholar 

  28. Risheng, L., Long, M., Jiaao, Z., Xin, F., Zhongxuan, L.: Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. In: CVPR (2021)

    Google Scholar 

  29. Rivera, R., Ryu, B., Chae, O.: Content-aware dark image enhancement through channel division. IEEE TIP 21(9), 3967–3980 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: MICCAI (2015)

    Google Scholar 

  31. Sean Moran, Ales Leonardis, G.S.S.M.: Curl: neural curve layers for global image enhancement. arXiv:1911.13175 (2019)

  32. Wang, R., Zhang, Q., Fu, C., Shen, X., Zheng, W., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: CVPR (2019)

    Google Scholar 

  33. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  34. Wei, H., Yifeng, Z., Rui, H.: Low light image enhancement network with attention mechanism and Retinex model. IEEE Access 8, 74306–74314 (2020)

    Article  Google Scholar 

  35. Xu, K., Tian, X., Yang, X., Yin, B., Lau, R.W.H.: Intensity-aware single-image deraining with semantic and color regularization. IEEE TIP 30, 8497–8509 (2021)

    Google Scholar 

  36. Xu, K., Yang, X., Yin, B., Lau, R.W.: Learning to restore low-light images via decomposition-and-enhancement. In: CVPR (2020)

    Google Scholar 

  37. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via natural variation measure. ACM TOG 31(6), 1–10 (2012)

    Google Scholar 

  38. Yang, W., Wang, S., Fang, Y., Wang, Y., Liu, J.: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement. In: CVPR (2020)

    Google Scholar 

  39. Yang, X., Xu, K., Song, Y., Zhang, Q., Wei, X., Lau, R.: Image correction via deep reciprocating HDR transformation. In: CVPR (2018)

    Google Scholar 

  40. Yu, R., Liu, W., Zhang, Y., Qu, Z., Zhao, D., Zhang, B.: DeepExposure: learning to expose photos with asynchronously reinforced adversarial learning. In: NeurIPS (2018)

    Google Scholar 

  41. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: CVPR (2021)

    Google Scholar 

  42. Zhang, Q., Nie, Y., Zheng, W.: Dual illumination estimation for robust exposure correction. In: Computer Graphics Forum (2019)

    Google Scholar 

  43. Zhang, Q., Yuan, G., Xiao, C., Zhu, L., Zheng, W.S.: High-quality exposure correction of underexposed photos. In: ACM MM (2018)

    Google Scholar 

  44. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: ACM MM (2019)

    Google Scholar 

Download references

Acknowledgments

This project is in part supported by a General Research Fund from RGC of Hong Kong (RGC Ref.: 11205620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyuan Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 14160 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Xu, K., Lau, R.W.H. (2022). Local Color Distributions Prior for Image Enhancement. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19797-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19796-3

  • Online ISBN: 978-3-031-19797-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics