[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Harmonizer: Learning to Perform White-Box Image and Video Harmonization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13675))

Included in the following conference series:

Abstract

Recent works on image harmonization solve the problem as a pixel-wise image translation task via large autoencoders. They have unsatisfactory performances and slow inference speeds when dealing with high-resolution images. In this work, we observe that adjusting the input arguments of basic image filters, e.g., brightness and contrast, is sufficient for humans to produce realistic images from the composite ones. Hence, we frame image harmonization as an image-level regression problem to learn the arguments of the filters that humans use for the task. We present a Harmonizer framework for image harmonization. Unlike prior methods that are based on black-box autoencoders, Harmonizer contains a neural network for filter argument prediction and several white-box filters (based on the predicted arguments) for image harmonization. We also introduce a cascade regressor and a dynamic loss strategy for Harmonizer to learn filter arguments more stably and precisely. Since our network only outputs image-level arguments and the filters we used are efficient, Harmonizer is much lighter and faster than existing methods. Comprehensive experiments demonstrate that Harmonizer surpasses existing methods notably, especially with high-resolution inputs. Finally, we apply Harmonizer to video harmonization, which achieves consistent results across frames and 56 fps at 1080P resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afifi, M., Brown, M.S.: Deep white-balance editing. In: CVPR (2020)

    Google Scholar 

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24 (2009)

    Article  Google Scholar 

  3. Barron, J.T., Malik, J.: Shape, illumination, and reflectance from shading. IEEE TPAMI 37(8), 1670–1687 (2014)

    Article  Google Scholar 

  4. Bonneel, N., Sunkavalli, K., Paris, S., Pfister, H.: Example-based video color grading. ACM Trans. Graph. 32(4), 1–39 (2013)

    Article  Google Scholar 

  5. Bonneel, N., Tompkin, J., Sunkavalli, K., Sun, D., Paris, S., Pfister, H.: Blind video temporal consistency. ACM Transa. Graph. 34(6), 1–9 (2015)

    Article  Google Scholar 

  6. Bradley, R.A., Terry, M.E.: The rank analysis of incomplete block designs - I. The method of paired comparisons. Biometrika 39(3/4), 324–345 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., Xu, Y.Q.: Color harmonization. ACM Trans. Graph. 25(3), 624–630 (2006)

    Article  Google Scholar 

  8. Cong, W., Niu, L., Zhang, J., Liang, J., Zhang, L.: Bargainnet: background-guided domain translation for image harmonization. In: ICME (2021)

    Google Scholar 

  9. Cong, W., et al.: Dovenet: deep image harmonization via domain verification. In: CVPR (2020)

    Google Scholar 

  10. Cun, X., Pun, C.M.: Improving the harmony of the composite image by spatial-separated attention module. IEEE Trans. Image Process 29, 4759–4771 (2020)

    Article  MATH  Google Scholar 

  11. Goodfellow, I.J., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  12. Guo, Z., Guo, D., Zheng, H., Gu, Z., Zheng, B., Dong, J.: Image harmonization with transformer. In: ICCV (2021)

    Google Scholar 

  13. Guo, Z., Zheng, H., Jiang, Y., Gu, Z., Zheng, B.: Intrinsic image harmonization. In: CVPR (2021)

    Google Scholar 

  14. Hao, G., Iizuka, S., Fukui, K.: Image harmonization with attention-based deep feature modulation. In: BMVC (2020)

    Google Scholar 

  15. Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. ACM Trans. Graph. 37(2), 1–17 (2018)

    Article  Google Scholar 

  16. Huang, H., Xu, S., Cai, J., Liu, W., Hu, S.: Temporally coherent video harmonization using adversarial networks. IEEE Trans. Image Process 29, 214–224 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  18. Jia, J., Sun, J., Tang, C.K., Shum, H.Y.: Drag-and-drop pasting. ACM Trans. Graph. 25(3), 631–637 (2006)

    Article  Google Scholar 

  19. Jiang, Y., et al.: A self-supervised framework for image harmonization. In: ICCV (2021)

    Google Scholar 

  20. Johnson, M.K., Dale, K., Avidan, S., Pfister, H., Freeman, W.T., Matusik., W.: Cg2real: improving the realism of computer generated images using a large collection of photographs. IEEE Trans. Vis. Comput. Graph. 17(9), 1273-1285 (2010)

    Google Scholar 

  21. Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.: Modnet: real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022)

    Google Scholar 

  22. Lai, W.S., Huang, J.B., Wang, O., Shechtman, E., Yumer, E., Yang, M.H.: Learning blind video temporal consistency. In: ECCV (2018)

    Google Scholar 

  23. Lalonde, J.F., Efros, A.A.: Using color compatibility for assessing image realism. In: ICCV (2007)

    Google Scholar 

  24. Lei, C., Xing, Y., Chen, Q.: Blind video temporal consistency via deep video prior. In: Neurips (2020)

    Google Scholar 

  25. Liang, J., Cun, X., Pun, C.: Spatial-separated curve rendering network for efficient and high-resolution image harmonization. arXiv abs/2109.05750 (2021)

    Google Scholar 

  26. Lin, S., Yang, L., Saleemi, I., Sengupta, S.: Robust high-resolution video matting with temporal guidance. In: WACV (2022)

    Google Scholar 

  27. Ling, J., Xue, H., Song, L., Xie, R., Gu, X.: Region-aware adaptive instance normalization for image harmonization. In: CVPR (2021)

    Google Scholar 

  28. Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep painterly harmonization. In: EGSR (2018)

    Google Scholar 

  29. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003)

    Article  Google Scholar 

  30. Pitie, F., Kokaram, A.: The linear monge-kantorovitch linear colour mapping for example-based colour transfer. In: European Conference on Visual Media Production (2007)

    Google Scholar 

  31. Pitie, F., Kokaram, A., Dahyot, R.: N-dimensional probability density function transfer and its application to color. In: ICCV (2015)

    Google Scholar 

  32. Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: going deeper with nested u-structure for salient object detection. Pattern Recogn. 106, 107404 (2020)

    Article  Google Scholar 

  33. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)

    Article  Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  35. Sofiiuk, K., Popenova, P., Konushin, A.: Foreground-aware semantic representations for image harmonization. In: WACV (2021)

    Google Scholar 

  36. Sunkavalli, K., Johnson, M.K., Matusik, W., Pfister, H.: Multi-scale image harmonization. ACM Trans. Graph. 29(4), 1–10 (2010)

    Article  Google Scholar 

  37. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: ICML (2019)

    Google Scholar 

  38. Tao, M.W., Johnson, M.K., Paris, S.: Error-tolerant image compositing. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 31–44. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_3

    Chapter  Google Scholar 

  39. Tsai, Y.H., Shen, X., Lin, Z., Sunkavalli, K., Lu, X., Yang, M.H.: Deep image harmonization. In: CVPR (2017)

    Google Scholar 

  40. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional gans. In: CVPR (2018)

    Google Scholar 

  41. Wang, X., Yu, J.: Learning to cartoonize using white-box cartoon representations. In: CVPR (2020)

    Google Scholar 

  42. Xue, S., Agarwala, A., Dorsey, J., Rushmeier, H.: Understanding and improving the realism of image composites. ACM Trans. Graph. 31(4), 1–10 (2012)

    Article  Google Scholar 

  43. Yan, Z., Zhang, H., Wang, B., Paris, S., Yu, Y.: Automatic photo adjustment using deep neural networks. ACM Trans. Graph. 35(2), 1–15 (2016)

    Article  Google Scholar 

  44. Zaragoza, J., Chin, T.J., Brown, M.S., Suter, D.: As-projective-as-possible image stitching with moving DLT. In: CVPR (2013)

    Google Scholar 

  45. Zhang, F., Liu, F.: Parallax-tolerant image stitching. In: CVPR (2014)

    Google Scholar 

  46. Zhang, R., Tsai, P.S., Cryer, J.E., Shah, M.: Shape-from-shading: a survey. IEEE TPAMI 21(8), 690–706 (1999)

    Article  MATH  Google Scholar 

  47. Zhu, J.Y., Krahenbuhl, P., Shechtman, E., Efros, A.A.: Learning a discriminative model for the perception of realism in composite images. In: ICCV (2015)

    Google Scholar 

  48. Zou, Z., Shi, T., Qiu, S., Yuan, Y., Shi, Z.: Stylized neural painting. In: CVPR (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanghan Ke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ke, Z., Sun, C., Zhu, L., Xu, K., Lau, R.W.H. (2022). Harmonizer: Learning to Perform White-Box Image and Video Harmonization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13675. Springer, Cham. https://doi.org/10.1007/978-3-031-19784-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19784-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19783-3

  • Online ISBN: 978-3-031-19784-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics