[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Capturing Dependencies Within Machine Learning via a Formal Process Model

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning (ISoLA 2022)

Abstract

The development of Machine Learning (ML) models is more than just a special case of software development (SD): ML models acquire properties and fulfill requirements even without direct human interaction in a seemingly uncontrollable manner. Nonetheless, the underlying processes can be described in a formal way. We define a comprehensive SD process model for ML that encompasses most tasks and artifacts described in the literature in a consistent way. In addition to the production of the necessary artifacts, we also focus on generating and validating fitting descriptions in the form of specifications. We stress the importance of further evolving the ML model throughout its life-cycle even after initial training and testing. Thus, we provide various interaction points with standard SD processes in which ML often is an encapsulated task. Further, our SD process model allows to formulate ML as a (meta-) optimization problem. If automated rigorously, it can be used to realize self-adaptive autonomous systems. Finally, our SD process model features a description of time that allows to reason about the progress within ML development processes. This might lead to further applications of formal methods within the field of ML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.siemens.com.

  2. 2.

    https://www.swm.de.

References

  1. IEEE standard for system and software verification and validation. IEEE Std. 1012–2012, pp. 1–223 (2012). https://doi.org/10.1109/IEEESTD.2012.6204026

  2. Akkiraju, R., et al.: Characterizing machine learning processes: a maturity framework. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 17–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_2

    Chapter  Google Scholar 

  3. Amershi, S., et al.: Software engineering for machine learning: a case study. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 291–300 (2019)

    Google Scholar 

  4. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering self-adaptive multi-agent systems: the adelfe methodology. In: Agent-Oriented Methodologies, vol. 7, pp. 172–202. Idea Group Publishing (2005)

    Google Scholar 

  5. Bosch, J., Crnkovic, I., Olsson, H.H.: Engineering AI systems: a research agenda. arxiv:2001.07522 (2020)

  6. Bourque, P., Fairley, R.E. (eds.): SWEBOK: guide to the software engineering body of knowledge. IEEE Computer Society, version 3.0 edn (2014). https://www.swebok.org

  7. Fainekos, G., Hoxha, B., Sankaranarayanan, S.: Robustness of Specifications and its applications to falsification, parameter mining, and runtime monitoring with S-TaLiRo. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 27–47. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_3

    Chapter  Google Scholar 

  8. Gabor, T., et al.: The scenario coevolution paradigm: adaptive quality assurance for adaptive systems. Int. J. Softw. Tools Technology Transfer 22(4), 457–476 (2020)

    Article  Google Scholar 

  9. Garlan, D., Schmerl, B., Cheng, S.W.: Software Architecture Based Self Adaptation, pp. 31–55. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-89828-5_2

  10. Geihs, K.: Selbst-adaptive software. Informatik-Spektrum 31(2), 133–145 (2008)

    Article  Google Scholar 

  11. Giray, G.: A software engineering perspective on engineering machine learning systems: state of the art and challenges. J. Syst. Softw. 180, 111031 (2021)

    Article  Google Scholar 

  12. He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. Knowl.-Based Syst. 212, 106622 (2021)

    Article  Google Scholar 

  13. Hernandez, D., Brown, T.B.: Measuring the algorithmic efficiency of neural networks. arxiv:2005.04305 (2020)

  14. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The ensemble development life cycle and best practices for collective autonomic systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16310-9_9

    Chapter  Google Scholar 

  15. Kreuzberger, D., Kühl, N., Hirschl, S.: Machine learning operations (mlops): overview, definition, and architecture. arxiv:2205.02302 (2022). https://doi.org/10.48550/ARXIV.2205.02302

  16. Kröger, F., Merz, S.: Temporal Logic and State Systems. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68635-4

    Book  MATH  Google Scholar 

  17. Kruchten, P.: The Rational Unified Process-An Introduction (2000)

    Google Scholar 

  18. Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: a review of machine learning interpretability methods. Entropy 23(1), 18 (2021)

    Article  Google Scholar 

  19. Lwakatare, L.E., Crnkovic, I., Bosch, J.: DevOps for AI-challenges in development of ai-enabled applications. In: 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–6. IEEE (2020)

    Google Scholar 

  20. Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H., Crnkovic, I.: A taxonomy of software engineering challenges for machine learning systems: an empirical investigation, pp. 227–243 (2019)

    Google Scholar 

  21. Martínez-Fernández, S., et al.: Software engineering for AI-based systems: a survey. arxiv:2105.01984 (2021)

  22. McKinley, P., Sadjadi, S., Kasten, E., Cheng, B.: Composing adaptive software. Computer 37(7), 56–64 (2004)

    Article  Google Scholar 

  23. Müller., R., et al.: Acoustic leak detection in water networks. In: Proceedings of the 13th International Conference on Agents and Artificial Intelligence, vol. 2: ICAART, pp. 306–313 (2021). https://doi.org/10.5220/0010295403060313

  24. Pappagallo, A., Massini, A., Tronci, E.: Monte carlo based statistical model checking of cyber-physical systems: a review. Information 11(12), 588 (2020)

    Article  Google Scholar 

  25. Paullada, A., Raji, I.D., Bender, E.M., Denton, E., Hanna, A.: Data and its (dis)contents: a survey of dataset development and use in machine learning research. Patterns 2(11), 100336 (2021)

    Article  Google Scholar 

  26. Phan, T., et al.: Learning and testing resilience in cooperative multi-agent systems. In: Proceedings of the 19th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2020 (2020)

    Google Scholar 

  27. Rahman, M.S., Rivera, E., Khomh, F., Guéhéneuc, Y., Lehnert, B.: Machine learning software engineering in practice: an ind. case study. arXiv:1906.07154 (2019)

  28. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD, KDD 2016, pp. 1135–1144. ACM (2016)

    Google Scholar 

  29. Ritz, F., et al.: Specification aware multi-agent reinforcement learning. In: Agents and Artificial Intelligence, pp. 3–21. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-10161-8_1

  30. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  31. Sevilla, J., Villalobos, P.: Parameter counts in machine learning. AI Alignment Forum (2021). https://www.alignmentforum.org/posts/GzoWcYibWYwJva8aL

  32. Sinreich, D.: An architectural blueprint for autonomic computing (2006). https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

  33. Studer, S., et al.: Towards CRISP-ML(Q): a machine learning process model with quality assurance methodology. Mach. Learn. Knowl. Extract. 3(2), 392–413 (2021)

    Article  Google Scholar 

  34. Watanabe, Y., et al.: Preliminary systematic literature review of machine learning system development process. arxiv:1910.05528 (2019)

  35. Wirsing, M., Belzner, L.: Towards systematically engineering autonomous systems using reinforcement learning and planning. In: Proceedings of Analysis, Verification and Transformation for Declarative Programming and Intelligent Systems (AVERTIS) (2022). https://doi.org/10.13140/RG.2.2.10618.16328

  36. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16310-9

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Ritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ritz, F. et al. (2022). Capturing Dependencies Within Machine Learning via a Formal Process Model. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning. ISoLA 2022. Lecture Notes in Computer Science, vol 13703. Springer, Cham. https://doi.org/10.1007/978-3-031-19759-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19759-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19758-1

  • Online ISBN: 978-3-031-19759-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics