[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Waterfall-Net: Waterfall Feature Aggregation for Point Cloud Semantic Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Abstract

In this paper, we observe that the point cloud density affects the performance of different categories in 3D point cloud semantic segmentation. Most existing point-based methods implicitly deal with this density issue via extracting multi-scale features in a single forward path. Instead, we propose a Waterfall-Net that explicitly utilizes the density property via cross-connected cascaded sub-networks. In Waterfall-Net, three sub-networks successively process the input point cloud. Each sub-network handles the point features sampled at different densities, obtaining the information at various densities. The output features of one sub-network are up-sampled via a learnable up-sample method and fed into the next sub-network. This Sub-Network Fusing aligns the density of two sub-networks and maintains the contextual information. Meanwhile, Sub-Stage Fusing fuses the sub-stage features between successive sub-networks according to the density. Such waterfall-like feature aggregation ensembles all the features from different densities and enhances the model learning ability. We empirically demonstrate the effectiveness of the Waterfall-Net on two benchmarks. Specifically, it achieves 72.2% mIoU on S3DIS and 55.7% mIoU on SemanticKitti.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Eng. 29(6), 33–41 (1984)

    Google Scholar 

  2. Armeni, I., et al.: 3d semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1534–1543 (2016)

    Google Scholar 

  3. Behley, J., et al.: Semantickitti: A dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307 (2019)

    Google Scholar 

  4. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV). pp. 801–818 (2018)

    Google Scholar 

  5. Cheng, M., Hui, L., Xie, J., Yang, J., Kong, H.: Cascaded non-local neural network for point cloud semantic segmentation. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 8447–8452. IEEE (2020)

    Google Scholar 

  6. Engelmann, F., Kontogianni, T., Schult, J., Leibe, B.: Know what your neighbors do: 3d semantic segmentation of point clouds. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 395–409. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_29

    Chapter  Google Scholar 

  7. Hu, Q., et al.: RandLA-Net: efficient semantic segmentation of large-scale point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11108–11117 (2020)

    Google Scholar 

  8. Jiang, M., Wu, Y., Zhao, T., Zhao, Z., Lu, C.: PointSIFT: a sift-like network module for 3d point cloud semantic segmentation. arXiv preprint arXiv:1807.00652 (2018)

  9. Ke, L., Chang, M.-C., Qi, H., Lyu, S.: Multi-scale structure-aware network for human pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 731–746. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_44

    Chapter  Google Scholar 

  10. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4558–4567 (2018)

    Google Scholar 

  11. Li, H., Xiong, P., Fan, H., Sun, J.: DFANet: deep feature aggregation for real-time semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9522–9531 (2019)

    Google Scholar 

  12. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on \(\chi \)-transformed points. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 828–838 (2018)

    Google Scholar 

  13. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8895–8904 (2019)

    Google Scholar 

  14. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: fast and accurate lidar semantic segmentation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4213–4220. IEEE (2019)

    Google Scholar 

  15. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  16. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  17. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 30, 1–10 (2017)

    Google Scholar 

  18. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense prediction in 3d. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3887–3896 (2018)

    Google Scholar 

  19. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6411–6420 (2019)

    Google Scholar 

  20. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–656 (2015)

    Google Scholar 

  21. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3349–3364 (2020)

    Article  Google Scholar 

  22. Wang, L., Huang, Y., Hou, Y., Zhang, S., Shan, J.: Graph attention convolution for point cloud semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10296–10305 (2019)

    Google Scholar 

  23. Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric continuous convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2589–2597 (2018)

    Google Scholar 

  24. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  25. Wu, B., Wan, A., Yue, X., Keutzer, K.: SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3d lidar point cloud. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1887–1893. IEEE (2018)

    Google Scholar 

  26. Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: SqueezeSegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 4376–4382. IEEE (2019)

    Google Scholar 

  27. Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: PointaSNL: robust point clouds processing using nonlocal neural networks with adaptive sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5589–5598 (2020)

    Google Scholar 

  28. Zhang, Y., et al.: PolarNet: an improved grid representation for online lidar point clouds semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9601–9610 (2020)

    Google Scholar 

  29. Zhang, Z., Hua, B.S., Yeung, S.K.: ShellNet: efficient point cloud convolutional neural networks using concentric shells statistics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1607–1616 (2019)

    Google Scholar 

  30. Zhao, H., Jiang, L., Fu, C.W., Jia, J.: PointWeb: enhancing local neighborhood features for point cloud processing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5565–5573 (2019)

    Google Scholar 

  31. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)

    Google Scholar 

  32. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  33. Zhao, L., Tao, W.: JSNet: joint instance and semantic segmentation of 3d point clouds. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12951–12958 (2020)

    Google Scholar 

  34. Zhiheng, K., Ning, L.: PyramNet: point cloud pyramid attention network and graph embedding module for classification and segmentation. arXiv preprint arXiv:1906.03299 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Shuai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shuai, H., Xu, X., Liu, Q. (2022). Waterfall-Net: Waterfall Feature Aggregation for Point Cloud Semantic Segmentation. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13536. Springer, Cham. https://doi.org/10.1007/978-3-031-18913-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18913-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18912-8

  • Online ISBN: 978-3-031-18913-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics