[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Capacity-Based Semantics for Inconsistency-Tolerant Inferences

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13562))

Included in the following conference series:

  • 352 Accesses

Abstract

Classical logic can deal with uncertainty caused by incomplete information and, beside the standard interpretation-based semantics, also has a semantics in terms of modalities expressing “known to be true”, “known to be false”, where binary-valued possibility theory and necessity measures are instrumental. When uncertainty is caused by inconsistency, the standard semantics of classical logic collapses, but the other one survives provided that we replace necessity measures by more general set functions. This is the topic of this paper where we show that various inconsistency-tolerant inferences for propositional bases, some of which defined at the syntactic level only, have a semantics in terms of binary-valued capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    BUT we cannot express the situation when \(E\not \subseteq [p]\) (i.e. \(K\not \models _E p\)) in the language \(\mathcal {L}\). Likewise, we do not have that \(K\models _E p\vee q\) if and only if \(K\models _E p\) or \(K\models _Eq\) (only the if part holds). To fully capture the epistemic semantics, the syntax needs a modality \(\Box \) in front of \(\mathcal {L}\)-formulas so as to properly express the statement \(E \subseteq [p]\) as \(N(p) = 1\) [1].

  2. 2.

    In [14], it is called QC logic, where QC stands for qualitative capacities.

  3. 3.

    \(N_k\) is the necessity measure associated with \(MC_k\).

  4. 4.

    The convention for representing epistemic states is in agreement with possibility theory, but it is opposite to Dunn-Belnap’s for whom the (now conjunctive) set {0, 1} represents \(\textbf{C}\) (at the same time true and false) and the empty set represents \(\textbf{U}\) understood as the lack of information.

  5. 5.

    Remember that values \(\textbf{U}\) and \(\textbf{C}\) play strictly equivalent roles for the truth ordering in \(\mathbb {V}_4\).

References

  1. Banerjee, M., Dubois, D.: A simple logic for reasoning about incomplete knowledge. Int. J. Approx. Reason. 55(2), 639–653 (2014)

    Article  MathSciNet  Google Scholar 

  2. Belnap, N.D.: How a computer should think. In: Contemporary Aspects of Philosophy, pp. 30–56. Oriel Press, Boston (1977)

    Google Scholar 

  3. Belnap, N.D.: A useful four-valued logic. In: Epstein, G. (ed.) Modern Uses of Multiple-valued Logic, pp. 8–37. Reidel (1977)

    Google Scholar 

  4. Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and inconsistent knowledge bases. In: Heckerman, D., Mamdani, E.H. (eds.) Proceedings of 9th Annual Conference on Uncertainty in AI (UAI 1993), pp. 411–419. Morgan Kaufmann (1993)

    Google Scholar 

  5. Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling of inconsistent knowledge bases: a comparative study. Part 1: The flat case. Stud. Log. 58, 17–45 (1997)

    Article  Google Scholar 

  6. Benferhat, S., Dubois, D., Prade, H.: An overview of inconsistency-tolerant inferences in prioritized knowledge bases. In: Dubois, D., Prade, H., Klement, E. (eds.) Fuzzy Sets, Logic and Reasoning about Knowledge, pp. 395–417. Kluwer (1999)

    Google Scholar 

  7. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)

    Book  Google Scholar 

  8. Choquet, G.: Theory of capacities. Ann. l’Inst. Fourier 5, 131–295 (1953)

    Article  MathSciNet  Google Scholar 

  9. Ciucci, D., Dubois, D.: From possibility theory to paraconsistency. In: Beziau, J.-Y., Chakraborty, M., Dutta, S. (eds.) New Directions in Paraconsistent Logic. SPMS, vol. 152, pp. 229–247. Springer, New Delhi (2015). https://doi.org/10.1007/978-81-322-2719-9_10

    Chapter  Google Scholar 

  10. Ciucci, D., Dubois, D.: A capacity-based framework encompassing Belnap-Dunn logic for reasoning about multisource information. Int. J. Approx. Reason. 106, 107–127 (2019)

    Article  MathSciNet  Google Scholar 

  11. Dubois, D.: Reasoning about ignorance and contradiction: many-valued logics versus epistemic logic. Soft. Comput. 16(11), 1817–1831 (2012)

    Article  Google Scholar 

  12. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press (1988)

    Google Scholar 

  13. Dubois, D., Prade, H., Rico, A.: On the informational comparison of qualitative fuzzy measures. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS, vol. 442, pp. 216–225. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08795-5_23

    Chapter  MATH  Google Scholar 

  14. Dubois, D., Prade, H., Rico, A.: Representing qualitative capacities as families of possibility measures. Int. J. Approx. Reason. 58, 3–24 (2015)

    Article  MathSciNet  Google Scholar 

  15. Dunn, J.M.: Intuitive semantics for first-degree entailment and coupled trees. Philos. Stud. 29(3), 149–168 (1976)

    Article  MathSciNet  Google Scholar 

  16. Font, J.: Belnap’s four-valued logic and De Morgan lattices. Log. J. IGPL 5(3), 1–29 (1997)

    Article  MathSciNet  Google Scholar 

  17. Grant, J., Parisi, F.: General information spaces: measuring inconsistency, rationality postulates, and complexity. Ann. Math. Artif. Intell. 90(2–3), 235–269 (2022)

    Article  MathSciNet  Google Scholar 

  18. Kleene, S.C.: Introduction to Metamathematics. D. Van Nostrand Co. (1952)

    Google Scholar 

  19. Priest, G.: The logic of paradox. J. Philos. Log. 8(1), 219–241 (1979)

    Article  MathSciNet  Google Scholar 

  20. Priest, G.: The logic of paradox revisited. J. Philos. Log. 13, 153–179 (1984)

    Article  MathSciNet  Google Scholar 

  21. Pynko, A.: Characterizing Belnap’s logic via De Morgan’s laws. Math. Log. Q. 41, 442–454 (1995)

    Article  MathSciNet  Google Scholar 

  22. Rescher, N., Manor, R.: On inference from inconsistent premises. Theor. Decis. 1, 179–219 (1970)

    Article  Google Scholar 

  23. Revesz, P.Z.: On the semantics of theory change: arbitration between old and new information. In: 12th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Databases, pp. 71–92 (1993)

    Google Scholar 

  24. Sugeno, M.: Theory of fuzzy integrals and its applications. Tokyo Institute of Technology (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Dubois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dubois, D., Prade, H. (2022). A Capacity-Based Semantics for Inconsistency-Tolerant Inferences. In: Dupin de Saint-Cyr, F., Öztürk-Escoffier, M., Potyka, N. (eds) Scalable Uncertainty Management. SUM 2022. Lecture Notes in Computer Science(), vol 13562. Springer, Cham. https://doi.org/10.1007/978-3-031-18843-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18843-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18842-8

  • Online ISBN: 978-3-031-18843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics