[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

When Correlation Clustering Meets Fairness Constraints

  • Conference paper
  • First Online:
Discovery Science (DS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13601))

Included in the following conference series:

Abstract

The study of fairness-related aspects in data analysis is an active field of research, which can be leveraged to understand and control specific types of bias in decision-making systems. A major problem in this context is fair clustering, i.e., grouping data objects that are similar according to a common feature space, while avoiding biasing the clusters against or towards particular types of classes or sensitive features. In this work, we focus on a correlation-clustering method we recently introduced, and experimentally assess its performance in a fairness-aware context. We compare it to state-of-the-art fair-clustering approaches, both in terms of classic clustering quality measures and fairness-related aspects. Experimental evidence on public real datasets has shown that our method yields solutions of higher quality than the competing methods according to classic clustering-validation criteria, without neglecting fairness aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Ralyhu/globalCC.

  2. 2.

    https://github.com/guptakhil/fair-clustering-fairlets.

  3. 3.

    https://github.com/talwagner/fair_clustering.

  4. 4.

    https://github.com/google-research/google-research/tree/master/correlation_clustering.

  5. 5.

    https://archive.ics.uci.edu/ml/datasets/.

  6. 6.

    https://www.kaggle.com/sakshigoyal7/credit-card-customers.

  7. 7.

    https://www.eneagrid.enea.it.

References

  1. Abraham, S.S., P, D., Sundaram, S.S.: Fairness in clustering with multiple sensitive attributes. In: Proceedings of the EDBT Conference, pp. 287–298 (2020)

    Google Scholar 

  2. Ahmadian, S., et al.: Fair hierarchical clustering. In: Proceedings of the NIPS Conference (2020)

    Google Scholar 

  3. Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: Proceedings of the AISTATS Conference, pp. 4195–4205 (2020)

    Google Scholar 

  4. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. In: Proceedings of the ACM STOC Symposium, pp. 684–693 (2005)

    Google Scholar 

  5. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. JACM 55(5), 23:1–23:27 (2008)

    Google Scholar 

  6. Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., Wagner, T.: Scalable fair clustering. In: Proceedings of the ICML Conference, pp. 405–413 (2019)

    Google Scholar 

  7. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1), 89–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bera, S.K., Chakrabarty, D., Flores, N., Negahbani, M.: Fair algorithms for clustering. In: Proceedings of the NIPS Conference, pp. 4955–4966 (2019)

    Google Scholar 

  9. Bercea, I.O., et al.: On the cost of essentially fair clusterings. In: Proceedings of the APPROX/RANDOM Conference, pp. 18:1–18:22 (2019)

    Google Scholar 

  10. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: Proceedings of the IEEE FOCS Symposium, pp. 524–533 (2003)

    Google Scholar 

  11. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. JCSS 71(3), 360–383 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP rounding algorithm for correlation clustering on complete and complete k-partite graphs. In: Proceedings of the ACM STOC Symposium, pp. 219–228 (2015)

    Google Scholar 

  13. Chhabra, A., Masalkovait-, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021)

    Google Scholar 

  14. Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. In: Proceedings of the NIPS Conference, pp. 5029–5037 (2017)

    Google Scholar 

  15. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. TCS 361(2–3), 172–187 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate impact. In: Proceedings of the ACM KDD Conference, pp. 259–268 (2015)

    Google Scholar 

  17. Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., Mullainathan, S.: Human decisions and machine predictions. Q. J. Econ. 133(1), 237–293 (2017)

    MATH  Google Scholar 

  18. Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k-center clustering for data summarization. In: Proceedings of the ICML Conference, pp. 3448–3457 (2019)

    Google Scholar 

  19. Kleindessner, M., Samadi, S., Awasthi, P., Morgenstern, J.: Guarantees for spectral clustering with fairness constraints. In: Proceedings of the ICML Conference, pp. 3458–3467 (2019)

    Google Scholar 

  20. Mandaglio, D., Tagarelli, A., Gullo, F.: Correlation clustering with global weight bounds. In: Proceedings of the ECML-PKDD Conference, pp. 499–515 (2021)

    Google Scholar 

  21. Martorelli, M., Jayatilake, S.M.D.A.C., Ganegoda, G.U.: Involvement of machine learning tools in healthcare decision making. J. Healthc. Eng. (2021)

    Google Scholar 

  22. Mashrur, A., Luo, W., Zaidi, N.A., Robles-Kelly, A.: Machine learning for financial risk management: a survey. IEEE Access 8, 203203–203223 (2020)

    Article  Google Scholar 

  23. Rösner, C., Schmidt, M.: Privacy preserving clustering with constraints. In: Proceedings of the ICALP Colloquim, pp. 96:1–96:14 (2018)

    Google Scholar 

  24. Schmidt, M., Schwiegelshohn, C., Sohler, C.: Fair coresets and streaming algorithms for fair k-means. In: Proceedings of the WAOA Workshop, pp. 232–251 (2019)

    Google Scholar 

  25. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discret. Appl. Math. 144(1–2), 173–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Swamy, C.: Correlation clustering: maximizing agreements via semidefinite programming. In: Proceedings of the ACM-SIAM SODA Conference, pp. 526–527 (2004)

    Google Scholar 

  27. van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation and other ranking and clustering problems. In: Proceedings of the WAOA Workshop, pp. 260–273 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Tagarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gullo, F., La Cava, L., Mandaglio, D., Tagarelli, A. (2022). When Correlation Clustering Meets Fairness Constraints. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18840-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18839-8

  • Online ISBN: 978-3-031-18840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics