Abstract
The study of fairness-related aspects in data analysis is an active field of research, which can be leveraged to understand and control specific types of bias in decision-making systems. A major problem in this context is fair clustering, i.e., grouping data objects that are similar according to a common feature space, while avoiding biasing the clusters against or towards particular types of classes or sensitive features. In this work, we focus on a correlation-clustering method we recently introduced, and experimentally assess its performance in a fairness-aware context. We compare it to state-of-the-art fair-clustering approaches, both in terms of classic clustering quality measures and fairness-related aspects. Experimental evidence on public real datasets has shown that our method yields solutions of higher quality than the competing methods according to classic clustering-validation criteria, without neglecting fairness aspects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
References
Abraham, S.S., P, D., Sundaram, S.S.: Fairness in clustering with multiple sensitive attributes. In: Proceedings of the EDBT Conference, pp. 287–298 (2020)
Ahmadian, S., et al.: Fair hierarchical clustering. In: Proceedings of the NIPS Conference (2020)
Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: Proceedings of the AISTATS Conference, pp. 4195–4205 (2020)
Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. In: Proceedings of the ACM STOC Symposium, pp. 684–693 (2005)
Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. JACM 55(5), 23:1–23:27 (2008)
Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., Wagner, T.: Scalable fair clustering. In: Proceedings of the ICML Conference, pp. 405–413 (2019)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1), 89–113 (2004)
Bera, S.K., Chakrabarty, D., Flores, N., Negahbani, M.: Fair algorithms for clustering. In: Proceedings of the NIPS Conference, pp. 4955–4966 (2019)
Bercea, I.O., et al.: On the cost of essentially fair clusterings. In: Proceedings of the APPROX/RANDOM Conference, pp. 18:1–18:22 (2019)
Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: Proceedings of the IEEE FOCS Symposium, pp. 524–533 (2003)
Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. JCSS 71(3), 360–383 (2005)
Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP rounding algorithm for correlation clustering on complete and complete k-partite graphs. In: Proceedings of the ACM STOC Symposium, pp. 219–228 (2015)
Chhabra, A., Masalkovait-, K., Mohapatra, P.: An overview of fairness in clustering. IEEE Access 9, 130698–130720 (2021)
Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. In: Proceedings of the NIPS Conference, pp. 5029–5037 (2017)
Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. TCS 361(2–3), 172–187 (2006)
Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate impact. In: Proceedings of the ACM KDD Conference, pp. 259–268 (2015)
Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., Mullainathan, S.: Human decisions and machine predictions. Q. J. Econ. 133(1), 237–293 (2017)
Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k-center clustering for data summarization. In: Proceedings of the ICML Conference, pp. 3448–3457 (2019)
Kleindessner, M., Samadi, S., Awasthi, P., Morgenstern, J.: Guarantees for spectral clustering with fairness constraints. In: Proceedings of the ICML Conference, pp. 3458–3467 (2019)
Mandaglio, D., Tagarelli, A., Gullo, F.: Correlation clustering with global weight bounds. In: Proceedings of the ECML-PKDD Conference, pp. 499–515 (2021)
Martorelli, M., Jayatilake, S.M.D.A.C., Ganegoda, G.U.: Involvement of machine learning tools in healthcare decision making. J. Healthc. Eng. (2021)
Mashrur, A., Luo, W., Zaidi, N.A., Robles-Kelly, A.: Machine learning for financial risk management: a survey. IEEE Access 8, 203203–203223 (2020)
Rösner, C., Schmidt, M.: Privacy preserving clustering with constraints. In: Proceedings of the ICALP Colloquim, pp. 96:1–96:14 (2018)
Schmidt, M., Schwiegelshohn, C., Sohler, C.: Fair coresets and streaming algorithms for fair k-means. In: Proceedings of the WAOA Workshop, pp. 232–251 (2019)
Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discret. Appl. Math. 144(1–2), 173–182 (2004)
Swamy, C.: Correlation clustering: maximizing agreements via semidefinite programming. In: Proceedings of the ACM-SIAM SODA Conference, pp. 526–527 (2004)
van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation and other ranking and clustering problems. In: Proceedings of the WAOA Workshop, pp. 260–273 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gullo, F., La Cava, L., Mandaglio, D., Tagarelli, A. (2022). When Correlation Clustering Meets Fairness Constraints. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-18840-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18839-8
Online ISBN: 978-3-031-18840-4
eBook Packages: Computer ScienceComputer Science (R0)