[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Few-Shot Segmentation of Microscopy Images Using Gaussian Process

  • Conference paper
  • First Online:
Medical Optical Imaging and Virtual Microscopy Image Analysis (MOVI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13578))

Abstract

Few-shot segmentation has received recent attention because of its promise to segment images containing novel classes based on a handful of annotated examples. Few-shot-based machine learning methods build generic and adaptable models that can quickly learn new tasks. This approach finds potential application in many scenarios that do not benefit from large repositories of labeled data, which strongly impacts the performance of the existing data-driven deep-learning algorithms. This paper presents a few-shot segmentation method for microscopy images that combines a neural-network architecture with a Gaussian-process (GP) regression. The GP regression is used in the latent space of an autoencoder-based segmentation model to learn the distribution of functions from the encoded image representations to the corresponding representation of the segmentation masks in the support set. This regression analysis serves as the prior for predicting the segmentation mask for the query image. The rich latent representation built by the GP using examples in the support set significantly impacts the performance of the segmentation model, demonstrated by extensive experimental evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Kofahi, Y., Zaltsman, A., Graves, R., Marshall, W., Rusu, M.: A deep learning-based algorithm for 2-d cell segmentation in microscopy images. BMC Bioinform. 19(365), 1050–1065 (2018)

    Google Scholar 

  2. Chen, X., Zhao, Y., Liu, C.: Medical image segmentation using scalable functional variational Bayesian neural networks with gaussian processes. Neurocomputing 500, 58–72 (2022)

    Article  Google Scholar 

  3. Dawoud, Y., Hornauer, J., Carneiro, G., Belagiannis, V.: Few-shot microscopy image cell segmentation. In: Dong, Y., Ifrim, G., Mladenić, D., Saunders, C., Van Hoecke, S. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12461, pp. 139–154. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67670-4_9

    Chapter  Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, vol. 70, pp. 1126–1135 (2017)

    Google Scholar 

  6. Gerhard, S., Funke, J., Martel, J., Cardona, A., Fetter, R.: Segmented anisotropic ssTEM dataset of neural tissue. In: figshare (2013)

    Google Scholar 

  7. Han, L., Yin, Z.: Unsupervised network learning for cell segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 282–292. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_27

    Chapter  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Johnander, J., Edstedt, J., Felsberg, M., Khan, F.S., Danelljan, M.: Dense Gaussian processes for few-shot segmentation (2021)

    Google Scholar 

  10. Kassim, Y.M., Glinskii, O.V., Glinsky, V.V., Huxley, V.H., Palaniappan, K.: Patch-based semantic segmentation for detecting arterioles and venules in epifluorescence imagery. In: IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–5 (2018)

    Google Scholar 

  11. Koch, G.: Siamese neural networks for one-shot image recognition. Master’s thesis, University of Toronto (2015)

    Google Scholar 

  12. Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O.: Computational framework for simulating fluorescence microscope images with cell populations. IEEE Trans. Med. Imaging 26(7), 1010–1016 (2007)

    Article  Google Scholar 

  13. Liu, D., et al.: Unsupervised instance segmentation in microscopy images via panoptic domain adaptation and task re-weighting. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4243–4252 (2020)

    Google Scholar 

  14. Lucchi, A., Li, Y., Fua, P.: Learning for structured prediction using approximate subgradient descent with working sets. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1987–1994. IEEE (2013)

    Google Scholar 

  15. Mahajan, K., Sharma, M., Vig, L.: Meta-dermdiagnosis: few-shot skin disease identification using meta-learning. In: Computer Vision and Pattern Recognition Workshops. IEEE (2020)

    Google Scholar 

  16. Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38(2), 448–459 (2019)

    Article  Google Scholar 

  17. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms (2018)

    Google Scholar 

  18. Nishimura, K., Ker, D.F.E., Bise, R.: Weakly supervised cell instance segmentation by propagating from detection response. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 649–657. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_72

    Chapter  Google Scholar 

  19. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)

    Google Scholar 

  20. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: International Conference on Learning Representations (2017)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: International Conference on Machine Learning (2016)

    Google Scholar 

  23. Shaban, A., Shray, Liu, B.Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. In: British Machine Vision Conference. BMVA Press (2017)

    Google Scholar 

  24. Singh, R., Bharti, V., Purohit, V., Kumar, A., Singh, A.K., Singh, S.K.: MetaMed: few-shot medical image classification using gradient-based meta-learning. Pattern Recogn. 44(2), 1050–1065 (2021)

    Google Scholar 

  25. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  26. Snell, J., Zemel, R.S.: Bayesian few-shot classification with one-vs-each pólya-gamma augmented gaussian processes. In: International Conference on Learning Representations (2021)

    Google Scholar 

  27. Tian, Z., Zhao, H., Shu, M., Yang, Z., Li, R., Jia, J.: Prior guided feature enrichment network for few-shot segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 44(2), 1050–1065 (2022)

    Article  Google Scholar 

  28. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  29. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: Few-shot image semantic segmentation with prototype alignment. In: IEEE/CVF International Conference on Computer Vision, pp. 9196–9205 (2019)

    Google Scholar 

  30. Wu, H., Wang, Z., Song, Y., Yang, L., Qin, J.: Cross-patch dense contrastive learning for semi-supervised segmentation of cellular nuclei in histopathologic images. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11666–11675 (2022)

    Google Scholar 

  31. Xie, G.S., Liu, J., Xiong, H., Shao, L.: Scale-aware graph neural network for few-shot semantic segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5471–5480 (2021)

    Google Scholar 

  32. Xie, W., Noble, J.A., Zisserman, A.: Microscopy cell counting and detection with fully convolutional regression networks. Comput. Methods Biomech. Biomed. Eng. Imaging Visual. 6(3), 283–292 (2018)

    Article  Google Scholar 

  33. Ze, W., Zichen, M., Xiantong, Z., Qiang, Q.: Learning to learn dense gaussian processes for few-shot learning. In: Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  34. Zhang, C., Lin, G., Liu, F., Guo, J., Wu, Q., Yao, R.: Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation. In: IEEE/CVF International Conference on Computer Vision, pp. 9586–9594 (2019)

    Google Scholar 

  35. Zhang, C., Lin, G., Liu, F., Yao, R., Shen, C.: CANet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5212–5221 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surojit Saha .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 815 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saha, S., Choi, O., Whitaker, R. (2022). Few-Shot Segmentation of Microscopy Images Using Gaussian Process. In: Huo, Y., Millis, B.A., Zhou, Y., Wang, X., Harrison, A.P., Xu, Z. (eds) Medical Optical Imaging and Virtual Microscopy Image Analysis. MOVI 2022. Lecture Notes in Computer Science, vol 13578. Springer, Cham. https://doi.org/10.1007/978-3-031-16961-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16961-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16960-1

  • Online ISBN: 978-3-031-16961-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics