Abstract
Non-Maximum Suppression (NMS) is widely used to remove duplicates in object detection. In strong disagreement with the deep learning paradigm, NMS often remains as the only heuristic step. Learning NMS methods have been proposed that are either designed for Faster-RCNN or rely on separate networks. In contrast, learning NMS for SSD models is not well investigated. In this paper, we show that even a very simple rescoring network can be trained end-to-end with an underlying SSD model to solve the duplicate removal problem efficiently. For this, detection scores and boxes are refined from image features by modeling relations between detections in a Graph Neural Network (GNN). Our approach is applicable to the large number of object proposals in SSD using a pre-filtering head. It can easily be employed in arbitrary SSD-like models with weight-shared box predictor. Experiments on MS-COCO and KITTI show that our method improves accuracy compared with other duplicate removal methods at significantly lower inference time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017
Hosang, J., Benenson, R., Schiele, B.: A convnet for non-maximum suppression. In: Rosenhahn, B., Andres, B. (eds.) GCPR 2016. LNCS, vol. 9796, pp. 192–204. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45886-1_16
Hosang, J., Benenson, R., Schiele, B.: Learning non-maximum suppression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4507–4515 (2017)
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3588–3597 (2018)
Huang, J.S., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7310–7311 (2017)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Qi, L., Liu, S., Shi, J., Jia, J.: Sequential context encoding for duplicate removal. arXiv preprint arXiv:1810.08770 (2018)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497 (2015)
Roh, B., Shin, J., Shin, W., Kim, S.: Sparse DETR: efficient end-to-end object detection with learnable sparsity. arXiv preprint arXiv:2111.14330 (2021)
Stewart, R., Andriluka, M., Ng, A.Y.: End-to-end people detection in crowded scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2325–2333 (2016)
Sun, P., Jiang, Y., Xie, E., Yuan, Z., Wang, C., Luo, P.: OneNet: towards end-to-end one-stage object detection. arXiv preprint arXiv:2012.05780 (2020)
Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)
Tan, Z., Nie, X., Qian, Q., Li, N., Li, H.: Learning to rank proposals for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8273–8281 (2019)
Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2019)
Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)
Zhou, Q., Yu, C., Shen, C., Wang, Z., Li, H.: Object detection made simpler by eliminating heuristic NMS. arXiv preprint arXiv:2101.11782 (2021)
Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)
Acknowledgement
The research leading to these results is funded by the German Federal Ministry for Economic Affairs and Climate Action within the project “KI Delta Learning” (Förderkennzeichen 19A19013A). The authors would like to thank the consortium for the successful cooperation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ding, S., Rehder, E., Schneider, L., Cordts, M., Gall, J. (2022). End-to-End Single Shot Detector Using Graph-Based Learnable Duplicate Removal. In: Andres, B., Bernard, F., Cremers, D., Frintrop, S., Goldlücke, B., Ihrke, I. (eds) Pattern Recognition. DAGM GCPR 2022. Lecture Notes in Computer Science, vol 13485. Springer, Cham. https://doi.org/10.1007/978-3-031-16788-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-16788-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16787-4
Online ISBN: 978-3-031-16788-1
eBook Packages: Computer ScienceComputer Science (R0)