Abstract
We present an approach that is able to automatically choose the best meta-heuristic and configuration for solving a real optimization problem. Our approach allows the researcher to indicate which meta-heuristics to choose from and, for each meta-heuristic, which parameters should be automatically configured to find good solutions for the optimization problem. We show that our approach is sound using ten well know real optimization problems and five meta-heuristics. As a side effect, we were also able to provide an unbiased way of assessing meta-heuristics concerning their performance to address one or more classes of real optimization problems. Our approach improved the results found for all the meta-heuristics in all problems and was also able to find very competitive results for all optimization problems when given the liberty to choose which meta-heuristic to use.
This work has been supported by FCT—Fundação para a Ciência e Tecnologia within the R &D Units Project Scope: UIDB/00319/2020. Kevin Martins thanks FCT for the grant SFRH/BD/151434/2021.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aranha, C., et al.: Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intell. 16(1), 1–6 (2021). https://doi.org/10.1007/s11721-021-00202-9
Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 120–127. IEEE (2007)
Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)
Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation metaheuristic algorithms. Comput. Ind. Eng. 137, 106040 (2019)
Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods, vol. 751. Wiley, Hoboken (2013)
Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)
Karaboga, D., et al.: An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university (2005)
Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS 2003 (Cat. No. 03EX706), pp. 80–87. IEEE (2003)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of International Conference on Neural Networks (ICNN 1995), Perth, WA, Australia, 27 November–1 December 1995, pp. 1942–1948. IEEE (1995)
O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)
Pedersen, M.E.H.: Good parameters for differential evolution. Hvass Labs (2010)
Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006). https://doi.org/10.1007/11729976_29
Ryan, Conor, O’Neill, Michael, Collins, J.J.: Introduction to 20 years of grammatical evolution. In: Ryan, Conor, O’Neill, Michael, Collins, J.J. (eds.) Handbook of Grammatical Evolution, pp. 1–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78717-6_1
Sala, R., Müller, R.: Benchmarking for metaheuristic black-box optimization: perspectives and open challenges. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE international conference on evolutionary computation proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), pp. 69–73. IEEE (1998)
Sörensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)
Yang, X.S., Deb, S.: Cuckoo search via lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)
Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Modell. Numer. Optim. 1(4), 330–343 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Martins, K., Mendes, R. (2022). Cherry-Picking Meta-heuristic Algorithms and Parameters for Real Optimization Problems. In: Marreiros, G., Martins, B., Paiva, A., Ribeiro, B., Sardinha, A. (eds) Progress in Artificial Intelligence. EPIA 2022. Lecture Notes in Computer Science(), vol 13566. Springer, Cham. https://doi.org/10.1007/978-3-031-16474-3_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-16474-3_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16473-6
Online ISBN: 978-3-031-16474-3
eBook Packages: Computer ScienceComputer Science (R0)