[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cherry-Picking Meta-heuristic Algorithms and Parameters for Real Optimization Problems

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13566))

Included in the following conference series:

  • 1509 Accesses

Abstract

We present an approach that is able to automatically choose the best meta-heuristic and configuration for solving a real optimization problem. Our approach allows the researcher to indicate which meta-heuristics to choose from and, for each meta-heuristic, which parameters should be automatically configured to find good solutions for the optimization problem. We show that our approach is sound using ten well know real optimization problems and five meta-heuristics. As a side effect, we were also able to provide an unbiased way of assessing meta-heuristics concerning their performance to address one or more classes of real optimization problems. Our approach improved the results found for all the meta-heuristics in all problems and was also able to find very competitive results for all optimization problems when given the liberty to choose which meta-heuristic to use.

This work has been supported by FCT—Fundação para a Ciência e Tecnologia within the R &D Units Project Scope: UIDB/00319/2020. Kevin Martins thanks FCT for the grant SFRH/BD/151434/2021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aranha, C., et al.: Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intell. 16(1), 1–6 (2021). https://doi.org/10.1007/s11721-021-00202-9

    Article  Google Scholar 

  2. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 120–127. IEEE (2007)

    Google Scholar 

  3. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  4. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation metaheuristic algorithms. Comput. Ind. Eng. 137, 106040 (2019)

    Article  Google Scholar 

  5. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods, vol. 751. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  6. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  7. Karaboga, D., et al.: An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university (2005)

    Google Scholar 

  8. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS 2003 (Cat. No. 03EX706), pp. 80–87. IEEE (2003)

    Google Scholar 

  9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of International Conference on Neural Networks (ICNN 1995), Perth, WA, Australia, 27 November–1 December 1995, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  10. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)

    Article  Google Scholar 

  11. Pedersen, M.E.H.: Good parameters for differential evolution. Hvass Labs (2010)

    Google Scholar 

  12. Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006). https://doi.org/10.1007/11729976_29

    Chapter  Google Scholar 

  13. Ryan, Conor, O’Neill, Michael, Collins, J.J.: Introduction to 20 years of grammatical evolution. In: Ryan, Conor, O’Neill, Michael, Collins, J.J. (eds.) Handbook of Grammatical Evolution, pp. 1–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78717-6_1

    Chapter  MATH  Google Scholar 

  14. Sala, R., Müller, R.: Benchmarking for metaheuristic black-box optimization: perspectives and open challenges. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

    Google Scholar 

  15. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE international conference on evolutionary computation proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), pp. 69–73. IEEE (1998)

    Google Scholar 

  16. Sörensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)

    Article  MathSciNet  Google Scholar 

  17. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  18. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  19. Yang, X.S., Deb, S.: Cuckoo search via lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)

    Google Scholar 

  20. Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Modell. Numer. Optim. 1(4), 330–343 (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martins, K., Mendes, R. (2022). Cherry-Picking Meta-heuristic Algorithms and Parameters for Real Optimization Problems. In: Marreiros, G., Martins, B., Paiva, A., Ribeiro, B., Sardinha, A. (eds) Progress in Artificial Intelligence. EPIA 2022. Lecture Notes in Computer Science(), vol 13566. Springer, Cham. https://doi.org/10.1007/978-3-031-16474-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16474-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16473-6

  • Online ISBN: 978-3-031-16474-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics