Abstract
Semi-supervised learning (SSL) for medical image classification has achieved exceptional success on efficiently exploiting knowledge from unlabeled data with limited labeled data. Nevertheless, recent SSL methods suffer from misleading hard-form pseudo labeling, exacerbating the confirmation bias issue due to rough training process. Moreover, the training schemes excessively depend on the quality of generated pseudo labels, which is vulnerable against the inferior ones. In this paper, we propose TEmporal knowledge-Aware Regularization (TEAR) for semi-supervised medical image classification. Instead of using hard pseudo labels to train models roughly, we design Adaptive Pseudo Labeling (AdaPL), a mild learning strategy that relaxes hard pseudo labels to soft-form ones and provides a cautious training. AdaPL is built on a novel theoretically derived loss estimator, which approximates the loss of unlabeled samples according to the temporal information across training iterations, to adaptively relax pseudo labels. To release the excessive dependency of biased pseudo labels, we take advantage of the temporal knowledge and propose Iterative Prototype Harmonizing (IPH) to encourage the model to learn discriminative representations in an unsupervised manner. The core principle of IPH is to maintain the harmonization of clustered prototypes across different iterations. Both AdaPL and IPH can be easily incorporated into prior pseudo labeling-based models to extract features from unlabeled medical data for accurate classification. Extensive experiments on three semi-supervised medical image datasets demonstrate that our method outperforms state-of-the-art approaches. The code is available at https://github.com/CityU-AIM-Group/TEAR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
RSNA: Intracranial hemorrhage detection challenge (2019). https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/
Allen-Zhu, Z., Li, Y., Song, Z.: A convergence theory for deep learning via over-parameterization. In: Proceedings of the ICML (2019)
Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. In: IEEE IJCNN (2020)
Bdair, T., Navab, N., Albarqouni, S.: FedPerl: semi-supervised peer learning for skin lesion classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 336–346. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_32
Berthelot, D., et al.: ReMixMatch: semi-supervised learning with distribution alignment and augmentation anchoring. In: Proceedings of the ICLR (2019)
Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: MixMatch: a holistic approach to semi-supervised learning. In: Proceedings of the NeurIPS (2019)
Bortsova, G., Dubost, F., Hogeweg, L., Katramados, I., de Bruijne, M.: Semi-supervised medical image segmentation via learning consistency under transformations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 810–818. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_90
Cascante-Bonilla, P., Tan, F., Qi, Y., Ordonez, V.: Curriculum labeling: revisiting pseudo-labeling for semi-supervised learning. In: AAAI (2020)
Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the CVPR Workshops (2020)
Cui, W., et al.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 554–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_43
Gong, C., Wang, D., Liu, Q.: AlphaMatch: improving consistency for semi-supervised learning with alpha-divergence. In: Proceedings of the CVPR (2021)
Grandvalet, Y., Bengio, Y., et al.: Semi-supervised learning by entropy minimization. In: CAP (2005)
Guo, X., Yuan, Y.: Semi-supervised WCE image classification with adaptive aggregated attention. Med. Image Anal. 64, 101733 (2020)
Gyawali, P.K., Ghimire, S., Bajracharya, P., Li, Z., Wang, L.: Semi-supervised medical image classification with global latent mixing. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 604–613. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_59
Gyawali, P.K., Li, Z., Ghimire, S., Wang, L.: Semi-supervised learning by disentangling and self-ensembling over stochastic latent space. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 766–774. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_85
Hu, Z., Yang, Z., Hu, X., Nevatia, R.: Simple: Similar pseudo label exploitation for semi-supervised classification. In: Proceedings of the CVPR (2021)
Huang, S., Wang, T., Xiong, H., Huan, J., Dou, D.: Semi-supervised active learning with temporal output discrepancy. In: Proceedings of the ICCV (2021)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the NeurIPS, vol. 25 (2012)
Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: Proceedings of the ICLR (2017)
Li, J., Xiong, C., Hoi, S.C.: CoMatch: semi-supervised learning with contrastive graph regularization. In: Proceedings of the ICCV (2021)
Lienen, J., Hüllermeier, E.: Credal self-supervised learning. In: Proceedings of the NeurIPS (2021)
Liu, Q., Yang, H., Dou, Q., Heng, P.-A.: Federated semi-supervised medical image classification via inter-client relation matching. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 325–335. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_31
Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: Proceedings of the ICLR (2016)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proceedings of the NeurIPS (2019)
Ren, Z., Yeh, R., Schwing, A.: Not all unlabeled data are equal: learning to weight data in semi-supervised learning. In: Proceedings of the NeurIPS (2020)
Smedsrud, P.H., et al.: Kvasir-capsule, a video capsule endoscopy dataset (2020)
Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: Proceedings of the NeurIPS (2020)
Su, H., Shi, X., Cai, J., Yang, L.: Local and global consistency regularized mean teacher for semi-supervised nuclei classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 559–567. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_62
Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: Proceedings of the ICML (2013)
Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of the ICLR (2014)
Tao, X., Li, Y., Zhou, W., Ma, K., Zheng, Y.: Revisiting Rubik’s cube: self-supervised learning with volume-wise transformation for 3D medical image segmentation. In: Martel, L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 238–248. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_24
Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Proceedings of the NeurIPS (2017)
Wang, R., Wu, Y., Chen, H., Wang, L., Meng, D.: Neighbor matching for semi-supervised learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 439–449. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_41
Xu, Y., et al.: Dash: semi-supervised learning with dynamic thresholding. In: Proceedings of the ICML (2021)
Zhang, B., et al.: FlexMatch: boosting semi-supervised learning with curriculum pseudo labeling. In: Proceedings of the NeurIPS (2021)
Zhou, Z., Sodha, V., Pang, J., Gotway, M.B., Liang, J.: Models genesis. Med. Image Anal. 67, 101840 (2021)
Acknowledgement
This work was supported by Hong Kong Research Grants Council (RGC) Early Career Scheme grant 21207420 (CityU 9048179) and the Novo Nordisk Foundation under the grant NNF20OC0062056.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, Q., Liu, X., Chen, Z., Ibragimov, B., Yuan, Y. (2022). Semi-supervised Medical Image Classification with Temporal Knowledge-Aware Regularization. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-16452-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16451-4
Online ISBN: 978-3-031-16452-1
eBook Packages: Computer ScienceComputer Science (R0)