[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Semi-supervised Medical Image Classification with Temporal Knowledge-Aware Regularization

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13438))

Abstract

Semi-supervised learning (SSL) for medical image classification has achieved exceptional success on efficiently exploiting knowledge from unlabeled data with limited labeled data. Nevertheless, recent SSL methods suffer from misleading hard-form pseudo labeling, exacerbating the confirmation bias issue due to rough training process. Moreover, the training schemes excessively depend on the quality of generated pseudo labels, which is vulnerable against the inferior ones. In this paper, we propose TEmporal knowledge-Aware Regularization (TEAR) for semi-supervised medical image classification. Instead of using hard pseudo labels to train models roughly, we design Adaptive Pseudo Labeling (AdaPL), a mild learning strategy that relaxes hard pseudo labels to soft-form ones and provides a cautious training. AdaPL is built on a novel theoretically derived loss estimator, which approximates the loss of unlabeled samples according to the temporal information across training iterations, to adaptively relax pseudo labels. To release the excessive dependency of biased pseudo labels, we take advantage of the temporal knowledge and propose Iterative Prototype Harmonizing (IPH) to encourage the model to learn discriminative representations in an unsupervised manner. The core principle of IPH is to maintain the harmonization of clustered prototypes across different iterations. Both AdaPL and IPH can be easily incorporated into prior pseudo labeling-based models to extract features from unlabeled medical data for accurate classification. Extensive experiments on three semi-supervised medical image datasets demonstrate that our method outperforms state-of-the-art approaches. The code is available at https://github.com/CityU-AIM-Group/TEAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. RSNA: Intracranial hemorrhage detection challenge (2019). https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/

  2. Allen-Zhu, Z., Li, Y., Song, Z.: A convergence theory for deep learning via over-parameterization. In: Proceedings of the ICML (2019)

    Google Scholar 

  3. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. In: IEEE IJCNN (2020)

    Google Scholar 

  4. Bdair, T., Navab, N., Albarqouni, S.: FedPerl: semi-supervised peer learning for skin lesion classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 336–346. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_32

    Chapter  Google Scholar 

  5. Berthelot, D., et al.: ReMixMatch: semi-supervised learning with distribution alignment and augmentation anchoring. In: Proceedings of the ICLR (2019)

    Google Scholar 

  6. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: MixMatch: a holistic approach to semi-supervised learning. In: Proceedings of the NeurIPS (2019)

    Google Scholar 

  7. Bortsova, G., Dubost, F., Hogeweg, L., Katramados, I., de Bruijne, M.: Semi-supervised medical image segmentation via learning consistency under transformations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 810–818. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_90

    Chapter  Google Scholar 

  8. Cascante-Bonilla, P., Tan, F., Qi, Y., Ordonez, V.: Curriculum labeling: revisiting pseudo-labeling for semi-supervised learning. In: AAAI (2020)

    Google Scholar 

  9. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)

  10. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the CVPR Workshops (2020)

    Google Scholar 

  11. Cui, W., et al.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 554–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_43

    Chapter  Google Scholar 

  12. Gong, C., Wang, D., Liu, Q.: AlphaMatch: improving consistency for semi-supervised learning with alpha-divergence. In: Proceedings of the CVPR (2021)

    Google Scholar 

  13. Grandvalet, Y., Bengio, Y., et al.: Semi-supervised learning by entropy minimization. In: CAP (2005)

    Google Scholar 

  14. Guo, X., Yuan, Y.: Semi-supervised WCE image classification with adaptive aggregated attention. Med. Image Anal. 64, 101733 (2020)

    Article  Google Scholar 

  15. Gyawali, P.K., Ghimire, S., Bajracharya, P., Li, Z., Wang, L.: Semi-supervised medical image classification with global latent mixing. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 604–613. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_59

    Chapter  Google Scholar 

  16. Gyawali, P.K., Li, Z., Ghimire, S., Wang, L.: Semi-supervised learning by disentangling and self-ensembling over stochastic latent space. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 766–774. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_85

    Chapter  Google Scholar 

  17. Hu, Z., Yang, Z., Hu, X., Nevatia, R.: Simple: Similar pseudo label exploitation for semi-supervised classification. In: Proceedings of the CVPR (2021)

    Google Scholar 

  18. Huang, S., Wang, T., Xiong, H., Huan, J., Dou, D.: Semi-supervised active learning with temporal output discrepancy. In: Proceedings of the ICCV (2021)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the NeurIPS, vol. 25 (2012)

    Google Scholar 

  20. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: Proceedings of the ICLR (2017)

    Google Scholar 

  21. Li, J., Xiong, C., Hoi, S.C.: CoMatch: semi-supervised learning with contrastive graph regularization. In: Proceedings of the ICCV (2021)

    Google Scholar 

  22. Lienen, J., Hüllermeier, E.: Credal self-supervised learning. In: Proceedings of the NeurIPS (2021)

    Google Scholar 

  23. Liu, Q., Yang, H., Dou, Q., Heng, P.-A.: Federated semi-supervised medical image classification via inter-client relation matching. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 325–335. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_31

    Chapter  Google Scholar 

  24. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: Proceedings of the ICLR (2016)

    Google Scholar 

  25. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proceedings of the NeurIPS (2019)

    Google Scholar 

  26. Ren, Z., Yeh, R., Schwing, A.: Not all unlabeled data are equal: learning to weight data in semi-supervised learning. In: Proceedings of the NeurIPS (2020)

    Google Scholar 

  27. Smedsrud, P.H., et al.: Kvasir-capsule, a video capsule endoscopy dataset (2020)

    Google Scholar 

  28. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: Proceedings of the NeurIPS (2020)

    Google Scholar 

  29. Su, H., Shi, X., Cai, J., Yang, L.: Local and global consistency regularized mean teacher for semi-supervised nuclei classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 559–567. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_62

    Chapter  Google Scholar 

  30. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: Proceedings of the ICML (2013)

    Google Scholar 

  31. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of the ICLR (2014)

    Google Scholar 

  32. Tao, X., Li, Y., Zhou, W., Ma, K., Zheng, Y.: Revisiting Rubik’s cube: self-supervised learning with volume-wise transformation for 3D medical image segmentation. In: Martel, L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 238–248. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_24

    Chapter  Google Scholar 

  33. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Proceedings of the NeurIPS (2017)

    Google Scholar 

  34. Wang, R., Wu, Y., Chen, H., Wang, L., Meng, D.: Neighbor matching for semi-supervised learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 439–449. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_41

    Chapter  Google Scholar 

  35. Xu, Y., et al.: Dash: semi-supervised learning with dynamic thresholding. In: Proceedings of the ICML (2021)

    Google Scholar 

  36. Zhang, B., et al.: FlexMatch: boosting semi-supervised learning with curriculum pseudo labeling. In: Proceedings of the NeurIPS (2021)

    Google Scholar 

  37. Zhou, Z., Sodha, V., Pang, J., Gotway, M.B., Liang, J.: Models genesis. Med. Image Anal. 67, 101840 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Hong Kong Research Grants Council (RGC) Early Career Scheme grant 21207420 (CityU 9048179) and the Novo Nordisk Foundation under the grant NNF20OC0062056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixuan Yuan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 197 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Q., Liu, X., Chen, Z., Ibragimov, B., Yuan, Y. (2022). Semi-supervised Medical Image Classification with Temporal Knowledge-Aware Regularization. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics