[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Region Proposal Rectification Towards Robust Instance Segmentation of Biological Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Top-down instance segmentation framework has shown its superiority in object detection compared to the bottom-up framework. While it is efficient in addressing over-segmentation, top-down instance segmentation suffers from over-crop problem. However, a complete segmentation mask is crucial for biological image analysis as it delivers important morphological properties such as shapes and volumes. In this paper, we propose a region proposal rectification (RPR) module to address this challenging incomplete segmentation problem. In particular, we offer a progressive ROIAlign module to introduce neighbor information into a series of ROIs gradually. The ROI features are fed into an attentive feed-forward network (FFN) for proposal box regression. With additional neighbor information, the proposed RPR module shows significant improvement in correction of region proposal locations and thereby exhibits favorable instance segmentation performances on three biological image datasets compared to state-of-the-art baseline methods. Experimental results demonstrate that the proposed RPR module is effective in both anchor-based and anchor-free top-down instance segmentation approaches, suggesting the proposed method can be applied to general top-down instance segmentation of biological images. Code is available (https://github.com/qzhangli/RPR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/c/data-science-bowl-2018.

References

  1. Chang, Q., et al.: Deeprecon: Joint 2d cardiac segmentation and 3d volume reconstruction via a structure-specific generative method. arXiv preprint arXiv:2206.07163 (2022)

  2. Chen, H., Qi, X., Yu, L., Dou, Q., Qin, J., Heng, P.A.: DCAN: deep contour-aware networks for object instance segmentation from histology images. Med. Image Anal. 36, 135–146 (2017)

    Article  Google Scholar 

  3. Gao, Y., Zhou, M., Liu, D., Yan, Z., Zhang, S., Metaxas, D.: A data-scalable transformer for medical image segmentation: architecture, model efficiency, and benchmark. arXiv preprint arXiv:2203.00131 (2022)

  4. Gao, Y., Zhou, M., Metaxas, D.N.: UTNet: a hybrid transformer architecture for medical image segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 61–71. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_6

    Chapter  Google Scholar 

  5. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Ccomputer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. He, X., Tan, C., Qiao, Y., Tan, V., Metaxas, D., Li, K.: Effective 3d humerus and scapula extraction using low-contrast and high-shape-variability MR data. In: Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging. vol. 10953, p. 109530O. International Society for Optics and Photonics (2019)

    Google Scholar 

  9. Hu, J.B., Guan, A., Zhangli, Q., Sayadi, L.R., Hamdan, U.S., Vyas, R.M.: Harnessing machine-learning to personalize cleft lip markings. Plastic Reconstruct. Surgery-Global Open 8(9S), 150–151 (2020)

    Article  Google Scholar 

  10. Irshad, H., et al.: Crowdsourcing image annotation for nucleus detection and segmentation in computational pathology: evaluating experts, automated methods, and the crowd. In: Pacific Symposium on Biocomputing Co-chairs, pp. 294–305. World Scientific (2014)

    Google Scholar 

  11. Lee, Y., Park, J.: Centermask: real-time anchor-free instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13906–13915 (2020)

    Google Scholar 

  12. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  13. Liu, D., Gao, Y., Zhangli, Q., Yan, Z., Zhou, M., Metaxas, D.: Transfusion: multi-view divergent fusion for medical image segmentation with transformers. arXiv preprint arXiv:2203.10726 (2022)

  14. Liu, D., Ge, C., Xin, Y., Li, Q., Tao, R.: Dispersion correction for optical coherence tomography by the stepped detection algorithm in the fractional Fourier domain. Opt. Express 28(5), 5919–5935 (2020)

    Article  Google Scholar 

  15. Liu, D., Liu, J., Liu, Y., Tao, R., Prince, J.L., Carass, A.: Label super resolution for 3d magnetic resonance images using deformable u-net. In: Medical Imaging 2021: Image Processing, vol. 11596, p. 1159628. International Society for Optics and Photonics (2021)

    Google Scholar 

  16. Liu, D., Xin, Y., Li, Q., Tao, R.: Dispersion correction for optical coherence tomography by parameter estimation in fractional Fourier domain. In: 2019 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 674–678. IEEE (2019)

    Google Scholar 

  17. Liu, D., Yan, Z., Chang, Q., Axel, L., Metaxas, D.N.: Refined deep layer aggregation for multi-disease, multi-view & multi-center cardiac MR segmentation. In: Puyol Antón, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 315–322. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_34

    Chapter  Google Scholar 

  18. Minervini, M., Fischbach, A., Scharr, H., Tsaftaris, S.A.: Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recogn. Lett. 81, 80–89 (2016)

    Article  Google Scholar 

  19. Oda, H., et al.: BESNet: boundary-enhanced segmentation of cells in histopathological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 228–236. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_26

    Chapter  Google Scholar 

  20. Pantanowitz, L.: Digital images and the future of digital pathology. J. Pathol. Inform. 1, 15 (2010)

    Article  Google Scholar 

  21. Payer, C., Štern, D., Neff, T., Bischof, H., Urschler, M.: Instance segmentation and tracking with cosine embeddings and recurrent hourglass networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_1

    Chapter  Google Scholar 

  22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  23. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 265–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_30

    Chapter  Google Scholar 

  24. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  26. Yi, J., et al.: Object-guided instance segmentation for biological images. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12677–12684 (2020)

    Google Scholar 

  27. Yi, J., et al.: Multi-scale cell instance segmentation with keypoint graph based bounding boxes. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 369–377. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_41

    Chapter  Google Scholar 

  28. Yi, J., Wu, P., Jiang, M., Huang, Q., Hoeppner, D.J., Metaxas, D.N.: Attentive neural cell instance segmentation. Med. Image Anal. 55, 228–240 (2019)

    Article  Google Scholar 

  29. Zhang, Y., et al.: A multi-branch hybrid transformer network for corneal endothelial cell segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 99–108. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_10

    Chapter  Google Scholar 

  30. Zhou, Y., Onder, O.F., Dou, Q., Tsougenis, E., Chen, H., Heng, P.-A.: CIA-Net: robust nuclei instance segmentation with contour-aware information aggregation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 682–693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_53

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Metaxas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhangli, Q. et al. (2022). Region Proposal Rectification Towards Robust Instance Segmentation of Biological Images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics