[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Contrastive Functional Connectivity Graph Learning for Population-based fMRI Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13431))

Abstract

Contrastive self-supervised learning has recently benefited fMRI classification with inductive biases. Its weak label reliance prevents overfitting on small medical datasets and tackles the high intraclass variances. Nonetheless, existing contrastive methods generate resemblant pairs only on pixel-level features of 3D medical images, while the functional connectivity that reveals critical cognitive information is under-explored. Additionally, existing methods predict labels on individual contrastive representation without recognizing neighbouring information in the patient group, whereas interpatient contrast can act as a similarity measure suitable for population-based classification. We hereby proposed contrastive functional connectivity graph learning for population-based fMRI classification. Representations on the functional connectivity graphs are “repelled” for heterogeneous patient pairs meanwhile homogeneous pairs “attract” each other. Then a dynamic population graph that strengthens the connections between similar patients is updated for classification. Experiments on a multi-site dataset ADHD200 validate the superiority of the proposed method on various metrics. We initially visualize the population relationships and exploit potential subtypes. Our code is available at https://github.com/xuesongwang/Contrastive-Functional-Connectivity-Graph-Learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://preprocessed-connectomes-project.org/adhd200/.

References

  1. Azizi, S., et al.: Big self-supervised models advance medical image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3478–3488 (2021)

    Google Scholar 

  2. Bessadok, A., Mahjoub, M.A., Rekik, I.: Graph neural networks in network neuroscience. arXiv preprint arXiv:2106.03535 (2021)

  3. Chen, C., Li, K., Wei, W., Zhou, J.T., Zeng, Z.: Hierarchical graph neural networks for few-shot learning. IEEE Trans. Circuits Syst. Video Technol. 32(1), 240–252 (2021)

    Article  Google Scholar 

  4. Chen, M., Li, H., Wang, J., Dillman, J.R., Parikh, N.A., He, L.: A multichannel deep neural network model analyzing multiscale functional brain connectome data for attention deficit hyperactivity disorder detection. Radiol. Artif. Intell. 2(1), e190012 (2019)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Cohen, J.R.: The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity. Neuroimage 180, 515–525 (2018)

    Article  Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Dufumier, B., et al.: Contrastive learning with continuous proxy meta-data for 3D MRI classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 58–68. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_6

    Chapter  Google Scholar 

  9. Eslami, T., Saeed, F.: Similarity based classification of ADHD using singular value decomposition. In: Proceedings of the 15th ACM International Conference on Computing Frontiers, pp. 19–25 (2018)

    Google Scholar 

  10. Hu, X., Zeng, D., Xu, X., Shi, Y.: Semi-supervised contrastive learning for label-efficient medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 481–490. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_45

    Chapter  Google Scholar 

  11. Konkle, T., Alvarez, G.A.: Instance-level contrastive learning yields human brain-like representation without category-supervision. BioRxiv, pp. 2020-06 (2020)

    Google Scholar 

  12. Li, J., et al.: Multi-task contrastive learning for automatic CT and X-ray diagnosis of COVID-19. Pattern Recogn. 114, 107848 (2021)

    Article  Google Scholar 

  13. Li, X., et al.: BrainGNN: interpretable brain graph neural network for FMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  14. Liu, Y., Wang, W., Ren, C.-X., Dai, D.-Q.: MetaCon: meta contrastive learning for microsatellite instability detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 267–276. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_26

    Chapter  Google Scholar 

  15. Mueller, S., et al.: Individual variability in functional connectivity architecture of the human brain. Neuron 77(3), 586–595 (2013)

    Article  Google Scholar 

  16. Parisot, S., et al.: Spectral graph convolutions for population-based disease prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21

    Chapter  Google Scholar 

  17. Rodriguez, M., et al.: Cognitive profiles and functional connectivity in first-episode schizophrenia spectrum disorders-linking behavioral and neuronal data. Front. Psychol. 10, 689 (2019)

    Article  Google Scholar 

  18. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph.(ToG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  19. Xing, X., Hou, Y., Li, H., Yuan, Y., Li, H., Meng, M.Q.-H.: Categorical relation-preserving contrastive knowledge distillation for medical image classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 163–173. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_16

    Chapter  Google Scholar 

  20. Zeng, D., et al.: Positional contrastive learning for volumetric medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 221–230. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_21

    Chapter  Google Scholar 

  21. Zeng, J., Xie, P.: Contrastive self-supervised learning for graph classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 10824–10832 (2021)

    Google Scholar 

  22. Zhang, Z., Luo, C., Wu, H., Chen, Y., Wang, N., Song, C.: From individual to whole: reducing intra-class variance by feature aggregation. Int. J. Comput. Vis. 1–20 (2022)

    Google Scholar 

  23. Zhao, K., Duka, B., Xie, H., Oathes, D.J., Calhoun, V., Zhang, Y.: A dynamic graph convolutional neural network framework reveals new insights into connectome dysfunctions in ADHD. Neuroimage 246, 118774 (2022)

    Article  Google Scholar 

  24. Zhong, H., et al.: Graph contrastive clustering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9224–9233 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuesong Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2650 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Yao, L., Rekik, I., Zhang, Y. (2022). Contrastive Functional Connectivity Graph Learning for Population-based fMRI Classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics