Abstract
Contrastive self-supervised learning has recently benefited fMRI classification with inductive biases. Its weak label reliance prevents overfitting on small medical datasets and tackles the high intraclass variances. Nonetheless, existing contrastive methods generate resemblant pairs only on pixel-level features of 3D medical images, while the functional connectivity that reveals critical cognitive information is under-explored. Additionally, existing methods predict labels on individual contrastive representation without recognizing neighbouring information in the patient group, whereas interpatient contrast can act as a similarity measure suitable for population-based classification. We hereby proposed contrastive functional connectivity graph learning for population-based fMRI classification. Representations on the functional connectivity graphs are “repelled” for heterogeneous patient pairs meanwhile homogeneous pairs “attract” each other. Then a dynamic population graph that strengthens the connections between similar patients is updated for classification. Experiments on a multi-site dataset ADHD200 validate the superiority of the proposed method on various metrics. We initially visualize the population relationships and exploit potential subtypes. Our code is available at https://github.com/xuesongwang/Contrastive-Functional-Connectivity-Graph-Learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azizi, S., et al.: Big self-supervised models advance medical image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3478–3488 (2021)
Bessadok, A., Mahjoub, M.A., Rekik, I.: Graph neural networks in network neuroscience. arXiv preprint arXiv:2106.03535 (2021)
Chen, C., Li, K., Wei, W., Zhou, J.T., Zeng, Z.: Hierarchical graph neural networks for few-shot learning. IEEE Trans. Circuits Syst. Video Technol. 32(1), 240–252 (2021)
Chen, M., Li, H., Wang, J., Dillman, J.R., Parikh, N.A., He, L.: A multichannel deep neural network model analyzing multiscale functional brain connectome data for attention deficit hyperactivity disorder detection. Radiol. Artif. Intell. 2(1), e190012 (2019)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Cohen, J.R.: The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity. Neuroimage 180, 515–525 (2018)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Dufumier, B., et al.: Contrastive learning with continuous proxy meta-data for 3D MRI classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 58–68. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_6
Eslami, T., Saeed, F.: Similarity based classification of ADHD using singular value decomposition. In: Proceedings of the 15th ACM International Conference on Computing Frontiers, pp. 19–25 (2018)
Hu, X., Zeng, D., Xu, X., Shi, Y.: Semi-supervised contrastive learning for label-efficient medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 481–490. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_45
Konkle, T., Alvarez, G.A.: Instance-level contrastive learning yields human brain-like representation without category-supervision. BioRxiv, pp. 2020-06 (2020)
Li, J., et al.: Multi-task contrastive learning for automatic CT and X-ray diagnosis of COVID-19. Pattern Recogn. 114, 107848 (2021)
Li, X., et al.: BrainGNN: interpretable brain graph neural network for FMRI analysis. Med. Image Anal. 74, 102233 (2021)
Liu, Y., Wang, W., Ren, C.-X., Dai, D.-Q.: MetaCon: meta contrastive learning for microsatellite instability detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 267–276. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_26
Mueller, S., et al.: Individual variability in functional connectivity architecture of the human brain. Neuron 77(3), 586–595 (2013)
Parisot, S., et al.: Spectral graph convolutions for population-based disease prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21
Rodriguez, M., et al.: Cognitive profiles and functional connectivity in first-episode schizophrenia spectrum disorders-linking behavioral and neuronal data. Front. Psychol. 10, 689 (2019)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph.(ToG) 38(5), 1–12 (2019)
Xing, X., Hou, Y., Li, H., Yuan, Y., Li, H., Meng, M.Q.-H.: Categorical relation-preserving contrastive knowledge distillation for medical image classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 163–173. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_16
Zeng, D., et al.: Positional contrastive learning for volumetric medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 221–230. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_21
Zeng, J., Xie, P.: Contrastive self-supervised learning for graph classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 10824–10832 (2021)
Zhang, Z., Luo, C., Wu, H., Chen, Y., Wang, N., Song, C.: From individual to whole: reducing intra-class variance by feature aggregation. Int. J. Comput. Vis. 1–20 (2022)
Zhao, K., Duka, B., Xie, H., Oathes, D.J., Calhoun, V., Zhang, Y.: A dynamic graph convolutional neural network framework reveals new insights into connectome dysfunctions in ADHD. Neuroimage 246, 118774 (2022)
Zhong, H., et al.: Graph contrastive clustering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9224–9233 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, X., Yao, L., Rekik, I., Zhang, Y. (2022). Contrastive Functional Connectivity Graph Learning for Population-based fMRI Classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-16431-6_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16430-9
Online ISBN: 978-3-031-16431-6
eBook Packages: Computer ScienceComputer Science (R0)