[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mirrors and Memory in Quantum Automata

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13479))

Included in the following conference series:

Abstract

In this paper we start from the simplest form of Quantum Finite Automata (QFAs), namely Measure-Once QFAs with cut-point. First we elaborate on a variant of their semantics that can be obtained through a shift from the Schrödinger to the Heisenberg picture of Quantum Mechanics. In the Schrödinger picture states evolve in time while observables remain constant, while in the Heisenberg one states are constant and observables evolve. Interestingly, in the case of a QFA such shift reverts time-evolution. However, the equivalence of the two pictures over the class of QFAs holds thanks to the closure of the class with respect to language mirroring. Since the expressive power of such class of automata remains limited to infinite languages, we then consider their extension with bounded (multi-letter QFAs) and unbounded memory. Unfortunately, while bounded memory enhances the expressive power, the unbounded memory approach does not behave as one would expect.

This work is partially supported by PRIN MUR project Noninterference and Reversibility Analysis in Private Blockchains (NiRvAna) - 20202FCJM and by GNCS INdAM project LESLIE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Some work has been done for Quantum Cellular Automata, where the equivalence between Schrödinger model and Heisenberg model has been proved (e.g., [4]).

References

  1. Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. Theory Comput. Syst. 39(1), 165–188 (2006)

    Article  MathSciNet  Google Scholar 

  2. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No. 98CB36280), pp. 332–341. IEEE (1998)

    Google Scholar 

  3. Anticoli, L., Piazza, C., Taglialegne, L., Zuliani, P.: Towards quantum programs verification: from Quipper circuits to QPMC. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 213–219. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40578-0_16

    Chapter  Google Scholar 

  4. Arrighi, P.: An overview of quantum cellular automata. Nat. Comput. 18(4), 885–899 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bell, P.C., Hirvensalo, M.: Acceptance ambiguity for quantum automata. In: 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

    Google Scholar 

  6. Belovs, A., Rosmanis, A., Smotrovs, J.: Multi-letter reversible and quantum finite automata. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 60–71. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73208-2_9

    Chapter  Google Scholar 

  7. Bergelson, V., Leibman, A.: Distribution of values of bounded generalized polynomials. Acta Mathem. 198(2), 155–230 (2007)

    Article  MathSciNet  Google Scholar 

  8. Bertoni, A., Carpentieri, M.: Analogies and differences between quantum and stochastic automata. Theort. Comput. Sci. 262(1–2), 69–81 (2001)

    Article  MathSciNet  Google Scholar 

  9. Bertoni, A., Mereghetti, C., Palano, B.: Quantum Computing: 1-way quantum automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45007-6_1

    Chapter  Google Scholar 

  10. Bhatia, A.S., Kumar, A.: Quantum finite automata: survey, status and research directions. arXiv preprint arXiv:1901.07992 (2019)

  11. Bhatia, A.S., Kumar, A.: On relation between linear temporal logic and quantum finite automata. J. Logic Lang. Inf. 29(2), 109–120 (2020)

    Article  MathSciNet  Google Scholar 

  12. Bianchi, M.P., Mereghetti, C., Palano, B.: Quantum finite automata: advances on Bertoni’s ideas. Theoret. Comput. Sci. 664, 39–53 (2017)

    Article  MathSciNet  Google Scholar 

  13. Birkan, U., Salehi, Ö., Olejar, V., Nurlu, C., Yakaryılmaz, A.: Implementing quantum finite automata algorithms on noisy devices. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 3–16. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77980-1_1

    Chapter  Google Scholar 

  14. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM J. Comput. 31(5), 1456–1478 (2002)

    Article  MathSciNet  Google Scholar 

  15. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R., et al.: Handbook of Model Checking, vol. 10. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

  16. Dirac, P.A.M.: Lectures on quantum field theory. Am. J. Phy. 37, 233–233 (1969)

    Article  Google Scholar 

  17. Feng, Y., Yu, N., Ying, M.: Model checking quantum Markova chains. J. Comput. Syst. Sci. 79(7), 1181–1198 (2013)

    Article  Google Scholar 

  18. Gainutdinova, A., Yakaryılmaz, A.: Unary probabilistic and quantum automata on promise problems. Quant. Inf. Process. 17(2), 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  19. Gay, S.J., Nagarajan, R., Papanikolaou, N.: QMC: a model checker for quantum systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 543–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_51

    Chapter  Google Scholar 

  20. Hermanns, H., Herzog, U., Katoen, J.P.: Process algebra for performance evaluation. Theoret. Comput. Sci. 274(1–2), 43–87 (2002)

    Article  MathSciNet  Google Scholar 

  21. Katoen, J.P.: The probabilistic model checking landscape. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 31–45 (2016)

    Google Scholar 

  22. Khadiev, K., et al.: Two-way and one-way quantum and classical automata with advice for online minimization problems. Theoret Comput. Sci. 920, 76–94 (2022)

    Article  MathSciNet  Google Scholar 

  23. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proceedings 38th Annual Symposium on Foundations of Computer Science, pp. 66–75 (1997)

    Google Scholar 

  24. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking: advances and applications. In: Drechsler, R. (ed.) Formal System Verification, pp. 73–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57685-5_3

    Chapter  Google Scholar 

  25. Mereghetti, C., Palano, B.: Guest column: Quantum finite automata: From theory to practice. ACM SIGACT News 52(3), 38–59 (2021)

    Article  MathSciNet  Google Scholar 

  26. Mereghetti, C., Palano, B., Cialdi, S., Vento, V., Paris, M.G., Olivares, S.: Photonic realization of a quantum finite automaton. Physical Review Research 2(1), 013089 (2020)

    Google Scholar 

  27. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoret. Comput. Sci. 237(1–2), 275–306 (2000)

    Google Scholar 

  28. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-33133-6

  29. Paschen, K.: Quantum finite automata using ancilla qubits. Technical report, Universität Karlsruhe (TH) (2000). https://doi.org/10.5445/IR/1452000

  30. Qiu, D., Yu, S.: Hierarchy and equivalence of multi-letter quantum finite automata. Theoret. Comput. Sci. 410(30–32), 3006–3017 (2009)

    Google Scholar 

  31. Qiu, D., Mateus, P., Sernadas, A.: One-way quantum finite automata together with classical states. arXiv preprint arXiv:0909.1428 pp. 3006–3017 (2009)

  32. Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963)

    Google Scholar 

  33. Von Neumann, J.: Mathematical foundations of quantum mechanics. In: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Romanello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Piazza, C., Romanello, R. (2022). Mirrors and Memory in Quantum Automata. In: Ábrahám, E., Paolieri, M. (eds) Quantitative Evaluation of Systems. QEST 2022. Lecture Notes in Computer Science, vol 13479. Springer, Cham. https://doi.org/10.1007/978-3-031-16336-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16336-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16335-7

  • Online ISBN: 978-3-031-16336-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics