Abstract
In this paper we start from the simplest form of Quantum Finite Automata (QFAs), namely Measure-Once QFAs with cut-point. First we elaborate on a variant of their semantics that can be obtained through a shift from the Schrödinger to the Heisenberg picture of Quantum Mechanics. In the Schrödinger picture states evolve in time while observables remain constant, while in the Heisenberg one states are constant and observables evolve. Interestingly, in the case of a QFA such shift reverts time-evolution. However, the equivalence of the two pictures over the class of QFAs holds thanks to the closure of the class with respect to language mirroring. Since the expressive power of such class of automata remains limited to infinite languages, we then consider their extension with bounded (multi-letter QFAs) and unbounded memory. Unfortunately, while bounded memory enhances the expressive power, the unbounded memory approach does not behave as one would expect.
This work is partially supported by PRIN MUR project Noninterference and Reversibility Analysis in Private Blockchains (NiRvAna) - 20202FCJM and by GNCS INdAM project LESLIE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Some work has been done for Quantum Cellular Automata, where the equivalence between Schrödinger model and Heisenberg model has been proved (e.g., [4]).
References
Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. Theory Comput. Syst. 39(1), 165–188 (2006)
Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No. 98CB36280), pp. 332–341. IEEE (1998)
Anticoli, L., Piazza, C., Taglialegne, L., Zuliani, P.: Towards quantum programs verification: from Quipper circuits to QPMC. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 213–219. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40578-0_16
Arrighi, P.: An overview of quantum cellular automata. Nat. Comput. 18(4), 885–899 (2019)
Bell, P.C., Hirvensalo, M.: Acceptance ambiguity for quantum automata. In: 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)
Belovs, A., Rosmanis, A., Smotrovs, J.: Multi-letter reversible and quantum finite automata. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 60–71. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73208-2_9
Bergelson, V., Leibman, A.: Distribution of values of bounded generalized polynomials. Acta Mathem. 198(2), 155–230 (2007)
Bertoni, A., Carpentieri, M.: Analogies and differences between quantum and stochastic automata. Theort. Comput. Sci. 262(1–2), 69–81 (2001)
Bertoni, A., Mereghetti, C., Palano, B.: Quantum Computing: 1-way quantum automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45007-6_1
Bhatia, A.S., Kumar, A.: Quantum finite automata: survey, status and research directions. arXiv preprint arXiv:1901.07992 (2019)
Bhatia, A.S., Kumar, A.: On relation between linear temporal logic and quantum finite automata. J. Logic Lang. Inf. 29(2), 109–120 (2020)
Bianchi, M.P., Mereghetti, C., Palano, B.: Quantum finite automata: advances on Bertoni’s ideas. Theoret. Comput. Sci. 664, 39–53 (2017)
Birkan, U., Salehi, Ö., Olejar, V., Nurlu, C., Yakaryılmaz, A.: Implementing quantum finite automata algorithms on noisy devices. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 3–16. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77980-1_1
Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM J. Comput. 31(5), 1456–1478 (2002)
Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R., et al.: Handbook of Model Checking, vol. 10. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8
Dirac, P.A.M.: Lectures on quantum field theory. Am. J. Phy. 37, 233–233 (1969)
Feng, Y., Yu, N., Ying, M.: Model checking quantum Markova chains. J. Comput. Syst. Sci. 79(7), 1181–1198 (2013)
Gainutdinova, A., Yakaryılmaz, A.: Unary probabilistic and quantum automata on promise problems. Quant. Inf. Process. 17(2), 1–17 (2018)
Gay, S.J., Nagarajan, R., Papanikolaou, N.: QMC: a model checker for quantum systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 543–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_51
Hermanns, H., Herzog, U., Katoen, J.P.: Process algebra for performance evaluation. Theoret. Comput. Sci. 274(1–2), 43–87 (2002)
Katoen, J.P.: The probabilistic model checking landscape. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 31–45 (2016)
Khadiev, K., et al.: Two-way and one-way quantum and classical automata with advice for online minimization problems. Theoret Comput. Sci. 920, 76–94 (2022)
Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proceedings 38th Annual Symposium on Foundations of Computer Science, pp. 66–75 (1997)
Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking: advances and applications. In: Drechsler, R. (ed.) Formal System Verification, pp. 73–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57685-5_3
Mereghetti, C., Palano, B.: Guest column: Quantum finite automata: From theory to practice. ACM SIGACT News 52(3), 38–59 (2021)
Mereghetti, C., Palano, B., Cialdi, S., Vento, V., Paris, M.G., Olivares, S.: Photonic realization of a quantum finite automaton. Physical Review Research 2(1), 013089 (2020)
Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoret. Comput. Sci. 237(1–2), 275–306 (2000)
Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-33133-6
Paschen, K.: Quantum finite automata using ancilla qubits. Technical report, Universität Karlsruhe (TH) (2000). https://doi.org/10.5445/IR/1452000
Qiu, D., Yu, S.: Hierarchy and equivalence of multi-letter quantum finite automata. Theoret. Comput. Sci. 410(30–32), 3006–3017 (2009)
Qiu, D., Mateus, P., Sernadas, A.: One-way quantum finite automata together with classical states. arXiv preprint arXiv:0909.1428 pp. 3006–3017 (2009)
Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963)
Von Neumann, J.: Mathematical foundations of quantum mechanics. In: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Piazza, C., Romanello, R. (2022). Mirrors and Memory in Quantum Automata. In: Ábrahám, E., Paolieri, M. (eds) Quantitative Evaluation of Systems. QEST 2022. Lecture Notes in Computer Science, vol 13479. Springer, Cham. https://doi.org/10.1007/978-3-031-16336-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-16336-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16335-7
Online ISBN: 978-3-031-16336-4
eBook Packages: Computer ScienceComputer Science (R0)