[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Artificial Intelligence Solutions Towards to BIM6D: Sustainability and Energy Efficiency

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2022)

Abstract

BIM6D is an aspect of building information modeling (BIM) that allows for a detailed analysis of a building's energy performance in order to improve energy and light efficiency, which in turn leads to a more sustainable building utilization. Predictions of a building's energy consumption can have added value in different aspects and for different building actors, be they engineers, architects or the building users themselves. The objective for this study is to explore mathematical and artificial intelligent approaches for predicting thermal energy consumption in buildings and to examine its use for BIM6D. The dataset used in the research includes several years of hourly thermal energy consumption collected in one block of Kaunas city. Experiments have been carried out using different forecasting methods. In terms of prediction accuracy, it is worth highlighting the Extra Trees with \({MAE < {3}{\text{.5}}\;{\text{kWh}}}\) and Support vector regression (SVR) with \({MAE \le {2}{\text{.63}}\;{\text{kWh}}}\). However, Extra Trees seems to be the best in terms of MAPE (38.65%). Although prediction time is not the most critical parameter, it should be noted, that Extra Trees, SVR and auto-regressive models were found to be the most time-consuming (from 2 to 4 min) to linear models (<1 s) and extreme gradient boosting (~3 s) and that these results may influence the selection of a model for real-life operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Montiel-Santiago, F.J., Hermoso-Orzáez, M.J., Terrados-Cepeda, J.: Sustainability and energy efficiency: BIM 6D. Study of the BIM methodology applied to hospital buildings. Value of interior lighting and daylight in energy simulation. Sustain. (Basel Switz.) 12, 5731 (2020). https://doi.org/10.3390/su12145731

  2. Kaewunruen, S., Sresakoolchai, J., Zhou, Z.: Sustainability-based lifecycle management for bridge infrastructure using 6D BIM. Sustain. (Basel Switz.) 12, 2436 (2020). https://doi.org/10.3390/su12062436

  3. Park, J., Cai, H.: WBS-based dynamic multi-dimensional BIM database for total construction as-built documentation. Autom. Constr. 77, 15–23 (2017). https://doi.org/10.1016/j.autcon.2017.01.021

    Article  Google Scholar 

  4. Jang, J., et al.: Development of an improved model to predict building thermal energy consumption by utilizing feature selection. Energies 12, 4187 (2019). https://doi.org/10.3390/en12214187

    Article  Google Scholar 

  5. Chou, J.-S., Tran, D.-S.: Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy 165, 709–726 (2018). https://doi.org/10.1016/j.energy.2018.09.144

    Article  Google Scholar 

  6. Deb, C., Zhang, F., Yang, J., Lee, S.E., Shah, K.W.: A review on time series forecasting techniques for building energy consumption. Renew. Sustain. Energy Rev. 74, 902–924 (2017). https://doi.org/10.1016/j.rser.2017.02.085

    Article  Google Scholar 

  7. Wang, H., Wei, R.: Electricity consumption forecast of energy saving monitoring and management platform based on exponential smoothing model, vol. 194 (2020). https://doi.org/10.1051/e3sconf/202019401006

  8. Nazir, S., Aziz, A.A., Hosen, J., Aziz, N.A., Murthy, G.R.: Forecast energy consumption time-series dataset using multistep LSTM models. J. Phys. Conf. Ser. 1933, 012054 (2021). https://doi.org/10.1088/1742-6596/1933/1/012054

  9. Barak, S., Sadegh, S.S.: Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm. Int. J. Electr. Power Energy Syst. 82, 92–104 (2016). https://doi.org/10.1016/j.ijepes.2016.03.012

    Article  Google Scholar 

  10. Bogner, K., Pappenberger, F., Zappa, M.: Machine learning techniques for predicting the energy consumption/production and its uncertainties driven by meteorological observations and forecasts. Sustain. (Basel Switz.) 11, 3328 (2019). https://doi.org/10.3390/su11123328

  11. Blázquez-García, A., Conde, A., Milo, A., Sánchez, R., Barrio, I.: Short-term office building elevator energy consumption forecast using SARIMA. J. Build. Perform. Simul. 13, 69–78 (2020). https://doi.org/10.1080/19401493.2019.1698657

    Article  Google Scholar 

  12. González-Briones, A., Hernández, G., Corchado, J.M., Omatu, S., Mohamad, M.S.: Machine learning models for electricity consumption forecasting: a review. In: 2019 2nd International Conference on Computer Applications Information Security (ICCAIS), pp. 1–6 (2019)

    Google Scholar 

  13. Kim, M.K., Kim, Y.-S., Srebric, J.: Predictions of electricity consumption in a campus building using occupant rates and weather elements with sensitivity analysis: artificial neural network vs. linear regression. Sustain. Cities Soc. 62, 102385 (2020). https://doi.org/10.1016/j.scs.2020.102385

  14. Abdullah, L., Leong, W.H.: The relationship of economic variables and final energy consumption: multiple linear regression evidence. In: MATEC Web of Conferences, vol. 189, p. 10025 (2018). https://doi.org/10.1051/matecconf/201818910025

  15. Oludolapo, O.A., Adisa, J.A., Pule, K.A.: Comparing performance of MLP and RBF neural network models for predicting South Africa’s energy consumption. J. Energy South. Afr. 23, 40–46 (2017). https://doi.org/10.17159/2413-3051/2012/v23i3a3171

  16. Jang, J., Baek, J., Leigh, S.-B.: Prediction of optimum heating timing based on artificial neural network by utilizing BEMS data. J. Build. Eng. 22, 66–74 (2019). https://doi.org/10.1016/j.jobe.2018.11.012

    Article  Google Scholar 

  17. Khan, P.W., Kim, Y., Byun, Y.-C., Lee, S.-J.: Influencing factors evaluation of machine learning-based energy consumption prediction. Energies 14, 7167 (2021). https://doi.org/10.3390/en14217167

    Article  Google Scholar 

  18. Chen, H.-Y., Lee, C.-H.: Electricity consumption prediction for buildings using multiple adaptive network-based fuzzy inference system models and gray relational analysis. Energy Rep. 5, 1509–1524 (2019). https://doi.org/10.1016/j.egyr.2019.10.009

    Article  Google Scholar 

  19. Babatunde, A.A., Abbasoglu, S.: Predictive analysis of photovoltaic plants specific yield with the implementation of multiple linear regression tool. Environ. Prog. Sustain. Energy 38, 13098 (2019). https://doi.org/10.1002/ep.13098

  20. Jung, S., Moon, J., Park, S., Rho, S., Baik, S.W., Hwang, E.: Bagging ensemble of multilayer perceptrons for missing electricity consumption data imputation. Sensors (Basel Switz.) 20, 1772 (2020). https://doi.org/10.3390/s20061772

  21. Hamedmoghadam, H., Joorabloo, N., Jalili, M.: Australia’s long-term electricity demand forecasting using deep neural networks (2018)

    Google Scholar 

  22. Aslam, S., Herodotou, H., Mohsin, S.M., Javaid, N., Ashraf, N., Aslam, S.: A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 144, 110992 (2021). https://doi.org/10.1016/j.rser.2021.110992

    Article  Google Scholar 

  23. Motalebi, M., Rashidi, A., Nasiri, M.M.: Optimization and BIM-based lifecycle assessment integration for energy efficiency retrofit of buildings. J. Build. Eng. 49, 104022 (2022). https://doi.org/10.1016/j.jobe.2022.104022

    Article  Google Scholar 

  24. Pereira, V., Santos, J., Leite, F., Escorcio, P.: Using BIM to improve building energy efficiency – a scientometric and systematic review. Energy Build. 250, 111292 (2021). https://doi.org/10.1016/j.enbuild.2021.111292

  25. Bracht, M.K., Melo, A.P., Lamberts, R.: A metamodel for building information modeling-building energy modeling integration in early design stage. Autom. Constr. 121, 103422 (2021). https://doi.org/10.1016/j.autcon.2020.103422

    Article  Google Scholar 

  26. Iowa State University: Iowa Environmental Mesonet Global METAR Archive. https://mesonet.agron.iastate.edu/request/download.phtml

  27. Liu, Y., Wang, W., Ghadimi, N.: Electricity load forecasting by an improved forecast engine for building level consumers. Energy 139, 18–30 (2017). https://doi.org/10.1016/j.energy.2017.07.150

    Article  Google Scholar 

  28. Mehedintu, A., Sterpu, M., Soava, G.: Estimation and forecasts for the share of renewable energy consumption in final energy consumption by 2020 in the European Union. Sustainability 10, 1515 (2018). https://doi.org/10.3390/su10051515

  29. Hoerl, A.E., Kennard, R.W.: Ridge regression: applications to nonorthogonal problems. Technometrics 12, 69–82 (1970). https://doi.org/10.2307/1267352

    Article  MATH  Google Scholar 

  30. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996)

    Google Scholar 

  31. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–451 (2004). https://doi.org/10.1214/009053604000000067

    Article  MathSciNet  MATH  Google Scholar 

  32. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67, 301–320 (2005)

    Google Scholar 

  33. Fraley, C., Hesterberg, T.: Least angle regression and LASSO for large datasets. Stat. Anal. Data Min. ASA Data Sci. J. 1, 251–259 (2009). https://doi.org/10.1002/sam.10021

    Article  MathSciNet  MATH  Google Scholar 

  34. Bottmer, L., Croux, C., Wilms, I.: Sparse regression for large data sets with outliers. Eur. J. Oper. Res. 297, 782–794 (2022). https://doi.org/10.1016/j.ejor.2021.05.049

    Article  MathSciNet  MATH  Google Scholar 

  35. Yu, Q., Miche, Y., Eirola, E., van Heeswijk, M., Séverin, E., Lendasse, A.: Regularized extreme learning machine for regression with missing data. Neurocomputing 102, 45–51 (2013). https://doi.org/10.1016/j.neucom.2012.02.040

    Article  Google Scholar 

  36. Yu, X., Liong, S.-Y.: Forecasting of hydrologic time series with ridge regression in feature space. J. Hydrol. 332, 290–302 (2007). https://doi.org/10.1016/j.jhydrol.2006.07.003

    Article  Google Scholar 

  37. Hans, C.: Elastic net regression modeling with the orthant normal prior. J. Am. Stat. Assoc. 106, 1383–1393 (2011). https://doi.org/10.1198/jasa.2011.tm09241

    Article  MathSciNet  MATH  Google Scholar 

  38. Ogutu, J.O., Schulz-Streeck, T., Piepho, H.-P.: Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc. 6, S10 (2012). https://doi.org/10.1186/1753-6561-6-S2-S10

    Article  Google Scholar 

  39. The best model of LASSO with the LARS. Library of Science. https://bibliotekanauki.pl/articles/1076395

  40. Iturbide, E., Cerda, J., Graff, M.: A comparison between LARS and LASSO for initialising the time-series forecasting auto-regressive equations. Procedia Technol. 7, 282–288 (2013). https://doi.org/10.1016/j.protcy.2013.04.035

    Article  Google Scholar 

  41. Khan, J.A., Van Aelst, S., Zamar, R.H.: Robust linear model selection based on least angle regression. J. Am. Stat. Assoc. 102, 1289–1299 (2007). https://doi.org/10.1198/016214507000000950

    Article  MathSciNet  MATH  Google Scholar 

  42. LARS Lasso documentation. https://scikit-learn.org/stable/modules/linear_model.html#lars-lasso

  43. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016). https://doi.org/10.1145/2939672.2939785

  44. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1

    Article  MATH  Google Scholar 

  45. Alawadi, S., Mera, D., Fernández-Delgado, M., Alkhabbas, F., Olsson, C.M., Davidsson, P.: A comparison of machine learning algorithms for forecasting indoor temperature in smart buildings. Energy Syst. 13, 689–705 (2020). https://doi.org/10.1007/s12667-020-00376-x

    Article  Google Scholar 

  46. John, V., Liu, Z., Guo, C., Mita, S., Kidono, K.: Real-time lane estimation using deep features and extra trees regression. In: Bräunl, T., McCane, B., Rivera, M., Yu, X. (eds.) PSIVT 2015. LNCS, vol. 9431, pp. 721–733. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29451-3_57

    Chapter  Google Scholar 

  47. Eskandarnia, E., AlHammad, M.: Predication of future energy consumption using SARIMAX, pp. 657–662 (2021). https://doi.org/10.1049/icp.2021.0853

  48. Zhou, Y.: Regional energy consumption prediction based on SARIMAX-LSTM model. Acad. J. Comput. Inf. Sci. 4 (2021). https://doi.org/10.25236/AJCIS.2021.040307

  49. Elamin, N., Fukushige, M.: Modeling and forecasting hourly electricity demand by SARIMAX with interactions. Energy 165, 257–268 (2018). https://doi.org/10.1016/j.energy.2018.09.157

    Article  Google Scholar 

  50. Fathi, M.M., Awadallah, A.G., Abdelbaki, A.M., Haggag, M.: A new Budyko framework extension using time series SARIMAX model. J. Hydrol. 570, 827–838 (2019). https://doi.org/10.1016/j.jhydrol.2019.01.037

    Article  Google Scholar 

  51. Lewis, C.D.: Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting. Butterworth-Heinemann, Oxford (1982)

    Google Scholar 

  52. Rausch, T., Albrecht, T., Baier, D.: Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables (2021). https://doi.org/10.15495/EPub_UBT_00006037

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justas Kardoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kardoka, J., Paulauskaite-Taraseviciene, A., Pupeikis, D. (2022). Artificial Intelligence Solutions Towards to BIM6D: Sustainability and Energy Efficiency. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds) Information and Software Technologies. ICIST 2022. Communications in Computer and Information Science, vol 1665. Springer, Cham. https://doi.org/10.1007/978-3-031-16302-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16302-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16301-2

  • Online ISBN: 978-3-031-16302-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics