[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Resource Allocation Strategy on Yarn Using Modified AHP Multi-criteria Method for Various Jobs Performed on a Heterogeneous Hadoop Cluster

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2022)

Abstract

Recently, Hadoop has been used extensively to process a large amount of data. However, it still faces resource allocation and load imbalance issues in a heterogeneous environment. The objective of this work is to present an efficient resource allocation approach based on multi-criteria decision making to assign resources required by the given job in a heterogeneous Yarn cluster. The proposed model considers node and job heterogeneity as constraints to achieve the best resource allocation while maintaining multiple performance criteria (CPU, Disk, Network and Memory) in real time. It is applied to Yarn architecture using a modified analytical hierarchy process (AHP). This work aims at mitigating load imbalance and improve the resource use when jobs and machines have heterogeneous characteristics. The implemented model provided better cluster resource utilization and reduced the job completion time over comparable Hadoop schedulers FIFO, Fair and TMSA, by 38.3%, 19.4% and 15%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://hadoop.apache.org/.

  2. 2.

    RI is the average CI of 500 randomly-filled matrices defined by Saaty.

References

  1. Awaysheh, F., Alazab, M., Garg, S., Niyato, D., Verikoukis, C.: Big data resource management & networks: taxonomy, survey, and future directions. IEEE Commun. Surv. Tutor. (2021)

    Google Scholar 

  2. Postoaca, A., Pop, F., Prodan, R.: h-Fair: asymptotic scheduling of heavy workloads in heterogeneous data centers. In: 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 366–369 (2018)

    Google Scholar 

  3. Shu-Jun, P., Xi-Min, Z., Da-Ming, H., Shu-Hui, L., Yuan-Xu, Z.: Optimization and research of Hadoop platform based on FIFO scheduler. In: 7th International Conference on Measuring Technology and Mechatronics Automation, pp. 727–730 (2015)

    Google Scholar 

  4. Sharma, G., Ganpati, A.: Performance evaluation of fair and capacity scheduling in Hadoop Yarn. In: 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), pp. 904–906 (2015)

    Google Scholar 

  5. Saaty, T.: Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World. RWS Publications, Pittsburgh (1990)

    Google Scholar 

  6. Wang, M., Wu, C., Cao, H., Liu, Y., Wang, Y., Hou, A.: On mapReduce scheduling in Hadoop yarn on heterogeneous clusters. In: 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference On Big Data Science And Engineering, pp. 1747–1754 (2018)

    Google Scholar 

  7. Bawankule, K., Dewang, R., Singh, A.: Historical data based approach for straggler avoidance in a heterogeneous Hadoop cluster. J. Amb. Intell. Hum. Comput. 12, 9573–9589 (2021)

    Article  Google Scholar 

  8. Paik, S., Goswami, R., Roy, D., Reddy, K.: Intelligent data placement in heterogeneous Hadoop cluster. In: International Conference on Next Generation Computing Technologies, pp. 568–579 (2017)

    Google Scholar 

  9. Naik, N., Negi, A., Br, T., Anitha, R.: A data locality based scheduler to enhance MapReduce performance in heterogeneous environments. Futur. Gener. Comput. Syst. 90, 423–434 (2019)

    Article  Google Scholar 

  10. Thu, M., Nwe, K., Aye, K.: Replication based on data locality for Hadoop distributed file system. In: 9th International Workshop on Computer Science (2019)

    Google Scholar 

  11. Delgado, P., Didona, D., Dinu, F., Zwaenepoel, W.: Kairos: preemptive data center scheduling without runtime estimates. In: Proceedings of the ACM Symposium on Cloud Computing, pp. 135–148 (2018)

    Google Scholar 

  12. Pandey, V., Saini, P.: How heterogeneity affects the design of Hadoop MapReduce schedulers: a state-of-the-art survey challenges. Big Data, 72–95 (2018)

    Google Scholar 

  13. Javanmardi, A., Yaghoubyan, S., BagheriFard, K., Parvin, H.: An architecture for scheduling with the capability of minimum share to heterogeneous Hadoop systems. J. Supercomput. 77(6), 5289–5318 (2021)

    Article  Google Scholar 

  14. Xu, H., Lau, W.: Optimal job scheduling with resource packing for heterogeneous servers. IEEE/ACM Trans. Netw. 29, 1553–1566 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emna Hosni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hosni, E., Kolsi, N., Chaari, W., Ghedira, K. (2022). Resource Allocation Strategy on Yarn Using Modified AHP Multi-criteria Method for Various Jobs Performed on a Heterogeneous Hadoop Cluster. In: Bădică, C., Treur, J., Benslimane, D., Hnatkowska, B., Krótkiewicz, M. (eds) Advances in Computational Collective Intelligence. ICCCI 2022. Communications in Computer and Information Science, vol 1653. Springer, Cham. https://doi.org/10.1007/978-3-031-16210-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16210-7_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16209-1

  • Online ISBN: 978-3-031-16210-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics