[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Brain Tumors Detection on MRI Images with K-means Clustering and Residual Networks

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2022)

Abstract

Many perspectives have been grown and extended instantaneously due to the evolution of the Fourth Industrial Revolution. Brain tumor detection is one of the most crucial mechanisms for standardization and care for injured patients. Early diagnosis from the beginning state lets the medical team develop comprehensive recovery protocols that help enhance patients’ survival rates. We have deployed the k-means clustering algorithm to stratify samples into three different view angles of MRI images (transverse, coronal, and sagittal) and combined a modified Residual Network (ResNet) architecture to diagnose three brain tumor types: glioma and meningioma pituitary tumor and recognize MRI images without tumor. The approach is evaluated on the dataset from Nanfang Hospital and General Hospital, Tianjin Medical University, China, with MRI images. Our result achieved 96% in brain tumor classification accuracy, the best among considered famous pre-trained networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kathawala, F., Shah, A., Shah, J., Vora, S., Patil, S.: Brain tumor detection and classification. In: Sharma, H., Govindan, K., Poonia, R.C., Kumar, S., El-Medany, W.M. (eds.) Advances in Computing and Intelligent Systems. AIS, pp. 547–556. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0222-4_52

    Chapter  Google Scholar 

  2. Das, J., Ghosh, S., Chakraborty, R., Pramanik, A.: Deep learning based classification of brain tumor types from MRI scans. In: Nayak, J., Favorskaya, M.N., Jain, S., Naik, B., Mishra, M. (eds.) Advanced Machine Learning Approaches in Cancer Prognosis. ISRL, vol. 204, pp. 425–454. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71975-3_16

    Chapter  Google Scholar 

  3. Valentino, D.J., Mazziotta, J.C., Huang, H.K.: Visualization of human brain structure-function relationships. In: Images of the Twenty-First Century. Proceedings of the Annual International Engineering in Medicine and Biology Society, vol. 6, pp. 1737–1738 (1989)

    Google Scholar 

  4. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, vol. 86, pp. 2278–2324 (1998)

    Google Scholar 

  5. Selvapandian, A., Manivannan, K.: Fusion based glioma brain tumor detection and segmentation using ANFIS classification. Comput. Methods Programs Biomed. 166, 33–38 (2018)

    Article  Google Scholar 

  6. Rajan, P.G., Sundar, C.: Brain tumor detection and segmentation by intensity adjustment. J. Med. Syst. 43(8), 1–13 (2019). https://doi.org/10.1007/s10916-019-1368-4

    Article  Google Scholar 

  7. Khan, M.A., et al.: Brain tumor detection and classification: a framework of marker-based watershed algorithm and multilevel priority features selection. Microsc. Res. Tech. 82, 909–922 (2019)

    Article  Google Scholar 

  8. Toğaçar, M., Ergen, B., Cömert, Z.: BrainMRNet: brain tumor detection using magnetic resonance images with a novel convolutional neural network model. Med. Hypotheses 134, 109531 (2020)

    Article  Google Scholar 

  9. Sadad, T., Rehman, A., Munir, A., Saba, T., Tariq, U., Ayesha, N., Abbasi, R.: Brain tumor detection and multi-classification using advanced deep learning techniques. Microsc. Res. Tech. 84, 1296–1308 (2021)

    Article  Google Scholar 

  10. Kim, S., Kim, B., Park, H.: Synthesis of brain tumor multicontrast MR images for improved data augmentation. Med. Phys. 48(5), 2185–2198 (2021). https://doi.org/10.1002/mp.14701

    Article  Google Scholar 

  11. Tran, N.T., Tran, V.H., Nguyen, N.B., Nguyen, T.K., Cheung, N.M.: On data augmentation for GAN training. IEEE Trans. Image Process. 30, 1882–1897 (2021). https://doi.org/10.1109/TIP.2021.3049346

    Article  MathSciNet  Google Scholar 

  12. Luo, Y., Zhu, L.Z., Wan, Z.Y., Lu, B.L.: Data augmentation for enhancing EEG-based emotion recognition with deep generative models. J. Neural Eng. 17, 056021 (2020)

    Google Scholar 

  13. Sinaga, K.P., Yang, M.S.: Unsupervised k-means clustering algorithm. IEEE Access 8, 80716–80727 (2020). https://doi.org/10.1109/ACCESS.2020.2988796

    Article  Google Scholar 

  14. Ke, X., Zou, J., Niu, Y.: End-to-end automatic image annotation based on deep CNN and multi-label data augmentation. IEEE Trans. Multimedia 21(8), 2093–2106 (2019). https://doi.org/10.1109/TMM.2019.2895511

    Article  Google Scholar 

  15. Sai Sundar, K.V., Bonta, L.R., Reddy, A.K., Baruah, P.K., Sankara, S.S.: Evaluating training time of inception-v3 and Resnet-50, 101 models using tensorflow across CPU and GPU. In: 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 1964–1968 (2018)

    Google Scholar 

  16. Cheng, J.: Brain tumor dataset. Figshare (2017)

    Google Scholar 

  17. Kaplan, K., Kaya, Y., Kuncan, M., Ertunç, H.M.: Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Med. Hypotheses 139, 109696 (2020)

    Article  Google Scholar 

  18. Waghmare, V.K., Kolekar, M.H.: Brain tumor classification using deep learning, pp. 155–175 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Thanh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, H.T. et al. (2022). Brain Tumors Detection on MRI Images with K-means Clustering and Residual Networks. In: Bădică, C., Treur, J., Benslimane, D., Hnatkowska, B., Krótkiewicz, M. (eds) Advances in Computational Collective Intelligence. ICCCI 2022. Communications in Computer and Information Science, vol 1653. Springer, Cham. https://doi.org/10.1007/978-3-031-16210-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16210-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16209-1

  • Online ISBN: 978-3-031-16210-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics