[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On a New Contrapositivisation Technique for Fuzzy Implications Constructed from Grouping Functions

  • Conference paper
  • First Online:
Applications of Fuzzy Techniques (NAFIPS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 500))

Included in the following conference series:

  • 278 Accesses

Abstract

We introduce a new contrapositivisation technique for fuzzy implications constructed from grouping functions and fuzzy negations, which generalizes the (S,N)-contrapositivisation, and we study some of its properties; we present some characterizations of the (G,N)-contrapositivisators concerning N-compatibility and the action of an automorphism. Finally, we present one method of how to obtain grouping functions from the contrapositivisators operators of (G,N)-implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguiló, I., Suñer, J., Torrens, J.: New types of contrapositivisation of fuzzy implications with respect to fuzzy negations. Inf. Sci. 322, 223–236 (2015)

    Article  MathSciNet  Google Scholar 

  2. Baczyński, M., Beliakov, G., Bustince, H., Pradera, A. (eds.): Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing, vol. 300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35677-3

    Book  MATH  Google Scholar 

  3. Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69082-5

    Book  MATH  Google Scholar 

  4. Bedregal, B., Dimuro, G.P., Bustince, H., Barrenechea, E.: New results on overlap and grouping functions. Inf. Sci. 249, 148–170 (2013). https://doi.org/10.1016/j.ins.2013.05.004

    Article  MathSciNet  MATH  Google Scholar 

  5. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Studies in Fuzziness and Soft Computing, vol. 221. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73721-6

    Book  MATH  Google Scholar 

  6. Bustince, H., Pagola, M., Mesiar, R., Hullermeier, E., Herrera, F.: Grouping, overlap, and generalized bientropic functions for fuzzy modeling of pairwise comparisons. IEEE Trans. Fuzzy Syst. 20(3), 405–415 (2012)

    Article  Google Scholar 

  7. Dimuro, G.P., Bedregal, B.: On residual implications derived from overlap functions. Inf. Sci. 312, 78–88 (2015)

    Article  MathSciNet  Google Scholar 

  8. Dimuro, G.P., Bedregal, B., Santiago, R.H.N.: On (G, N)-implications derived from grouping functions. Inf. Sci. 279, 1–17 (2014)

    Article  MathSciNet  Google Scholar 

  9. Dimuro, G.P., et al.: On D-implications derived by grouping functions. In: 2019 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE, New Orleans, LA, USA, 23–26 June 2019, pp. 1–6. IEEE (2019). https://doi.org/10.1109/FUZZ-IEEE.2019.8858924

  10. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Springer, Cham (2021). https://www.ebook.de/de/product/40449507/heinz_dieter_ebbinghaus_joerg_flum_wolfgang_thomas_mathematical_logic.html

  11. Matzenauer, M., Reiser, R., Santos, H.S., Bedregal, B.R.C., Bustince, H.: Strategies on admissible total orders over typical hesitant fuzzy implications applied to decision making problems. Int. J. Intell. Syst. 36(5), 2144–2182 (2021). https://doi.org/10.1002/int.22374

    Article  Google Scholar 

  12. Neres, F., Bedregal, B., Santiago, R.: On a new contrapositivisation technique for fuzzy implications. In: VI Congresso Brasileiro de Sistemas Fuzzy (VI CBSF). Universidade Estadual Paulista (Unesp), São José do Rio Preto, São Paulo, Brasil (2021)

    Google Scholar 

  13. Neres, F., Bedregal, B., Santiago, R.: On a new contrapositivisation technique for fuzzy implications constructed from triangular conorms. In: International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), University of Milano-Bicocca, Milan, Italy (2022, submitted)

    Google Scholar 

  14. Neres, F., Bedregal, B., Santiago, R.H.N.: (S, N, T)-Implications (2021). https://arxiv.org/abs/2106.15746

  15. Neres, F., Bedregal, B., Santiago, R.H.N.: Bi-aggregated contrapositivisation: a new contrapositivisation technique for fuzzy implications. Fuzzy Sets Syst. (2022, submitted)

    Google Scholar 

  16. Nguyen, H.: A First Course in Fuzzy Logic. CRC Press/Taylor & Francis Group, Boca Raton (2019)

    Google Scholar 

  17. O’Leary, M.L.: Mathematical Logic. Wiley (2015). https://www.ebook.de/de/product/21920146/o_leary_michael_l_o_leary_mathematical_logic.html

  18. Paiva, R., Bedregal, B., Santiago, R., Vieira, T.: Residuated implications derived from quasi-overlap functions on lattices. Int. J. Approx. Reason. 134, 95–110 (2021)

    Article  MathSciNet  Google Scholar 

  19. Palmeira, E.S., Bedregal, B.R.C., Fernández, J., Jurio, A.: On the extension of lattice-valued implications via retractions. Fuzzy Sets Syst. 240, 66–85 (2014). https://doi.org/10.1016/j.fss.2013.07.023

    Article  MathSciNet  MATH  Google Scholar 

  20. Pinheiro, J., Bedregal, B., Santiago, R.H.N., Santos, H.: A study of (T, N)-implications and its use to construct a new class of fuzzy subsethood measure. Int. J. Approx. Reason. 97, 1–16 (2018)

    Article  MathSciNet  Google Scholar 

  21. Qiao, J., Hu, B.Q.: On multiplicative generators of overlap and grouping functions. Fuzzy Sets Syst. 332, 1–24 (2018). https://doi.org/10.1016/j.fss.2016.11.010

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Brazilian National Council for Scientific and Technological Development CNPq under the Processes 312899/2021-1, 311429/2020-3 and 312053/2018-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Neres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neres, F., Santiago, R., Bedregal, B. (2023). On a New Contrapositivisation Technique for Fuzzy Implications Constructed from Grouping Functions. In: Dick, S., Kreinovich, V., Lingras, P. (eds) Applications of Fuzzy Techniques. NAFIPS 2022. Lecture Notes in Networks and Systems, vol 500. Springer, Cham. https://doi.org/10.1007/978-3-031-16038-7_18

Download citation

Publish with us

Policies and ethics