[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computing List Homomorphisms in Geometric Intersection Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2022)

Abstract

A homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H). Let H be a fixed graph with possible loops. In the list homomorphism problem, denoted by LHom(H), the instance is a graph G, whose every vertex is equipped with a subset of V(H), called list. We ask if there exists a homomorphism from G to H, such that every vertex from G is mapped to a vertex from its list.

We study the complexity of the LHom(H) problem in intersection graphs of various geometric objects. In particular, we are interested in answering the question for what graphs H and for what types of geometric objects, the LHom(H) problem can be solved in time subexponential in the number of vertices of the instance.

We fully resolve this question for string graphs, i.e., intersection graphs of continuous curves in the plane. Quite surprisingly, it turns out that the dichotomy coincides with the analogous dichotomy for graphs excluding a fixed path as an induced subgraph [Okrasa, Rzążewski, STACS 2021].

Then we turn our attention to intersections of fat objects. We observe that the (non) existence of subexponential-time algorithms in such classes is closely related to the size \(\textrm{mrc}(H)\) of a maximum reflexive clique in H, i.e., maximum number of pairwise adjacent vertices, each of which has a loop. We study the maximum value of \(\textrm{mrc}(H)\) that guarantees the existence of a subexponential-time algorithm for LHom(H) in intersection graphs of (i) convex fat objects, (ii) fat similarly-sized objects, and (iii) disks. In the first two cases we obtain optimal results, by giving matching algorithms and lower bounds.

Karolina Okrasa–Supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme Grant Agreement no. 714704.

Paweł Rzążewski–Supported by Polish National Science Centre grant no. 2018/31/D/ST6/00062.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Proofs of statements marked with (\(\spadesuit \)) can be found in the full version of the paper [19].

References

  1. Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized independent set problem on disk graphs. J. Algorithms 52(2), 134–151 (2004). https://doi.org/10.1016/j.jalgor.2003.10.001

    Article  MathSciNet  MATH  Google Scholar 

  2. de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S., Marx, D., van der Zanden, T.C.: A framework for exponential-time-hypothesis-tight algorithms and lower bounds in geometric intersection graphs. SIAM J. Comput. 49(6), 1291–1331 (2020). https://doi.org/10.1137/20M1320870

    Article  MathSciNet  MATH  Google Scholar 

  3. de Berg, M., Kisfaludi-Bak, S., Monemizadeh, M., Theocharous, L.: Clique-based separators for geometric intersection graphs. In: 32nd International Symposium on Algorithms and Computation, ISAAC 2021. LIPIcs, vol. 212, pp. 22:1–22:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ISAAC.2021.22

  4. Biró, C., Bonnet, É., Marx, D., Miltzow, T., Rzążewski, P.: Fine-grained complexity of coloring unit disks and balls. J. Comput. Geom. 9(2), 47–80 (2018). https://doi.org/10.20382/jocg.v9i2a4

  5. Bonamy, M., et al.: EPTAS and subexponential algorithm for maximum clique on disk and unit ball graphs. J. ACM 68(2), 9:1-9:38 (2021). https://doi.org/10.1145/3433160

    Article  MathSciNet  Google Scholar 

  6. Bonnet, É., Rzążewski, P.: Optimality program in segment and string graphs. Algorithmica 81(7), 3047–3073 (2019). https://doi.org/10.1007/s00453-019-00568-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret. Math. 86(1–3), 165–177 (1990). https://doi.org/10.1016/0012-365X(90)90358-O

    Article  MathSciNet  MATH  Google Scholar 

  8. Edwards, K.: The complexity of colouring problems on dense graphs. Theor. Comput. Sci. 43, 337–343 (1986). https://doi.org/10.1016/0304-3975(86)90184-2

    Article  MathSciNet  MATH  Google Scholar 

  9. Fishkin, A.V.: Disk graphs: a short survey. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 260–264. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24592-6_23

    Chapter  Google Scholar 

  10. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi, M.: Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discrete Computat. Geom. 62(4), 879–911 (2019). https://doi.org/10.1007/s00454-018-00054-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi, M.: ETH-tight algorithms for long path and cycle on unit disk graphs. In: Cabello, S., Chen, D.Z. (eds.) 36th International Symposium on Computational Geometry, SoCG 2020, 23–26 June 2020, Zürich, Switzerland. LIPIcs, vol. 164, pp. 44:1–44:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.SoCG.2020.44

  12. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Bidimensionality and geometric graphs. In: Rabani, Y. (ed.) Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19 January 2012, pp. 1563–1575. SIAM (2012). https://doi.org/10.1137/1.9781611973099

  13. Golumbic, M.C.: Chapter 8 - interval graphs. In: Golumbic, M.C. (ed.) Algorithmic Graph Theory and Perfect Graphs, Annals of Discrete Mathematics, vol. 57, pp. 171–202. Elsevier (2004). https://doi.org/10.1016/S0167-5060(04)80056-6

  14. Huson, M., Sen, A.: Broadcast scheduling algorithms for radio networks. In: Proceedings of MILCOM 1995, vol. 2, pp. 647–651 (1995). https://doi.org/10.1109/MILCOM.1995.483546

  15. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

    Article  MathSciNet  MATH  Google Scholar 

  16. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/jcss.2001.1774

    Article  MathSciNet  MATH  Google Scholar 

  17. Jungck, J.R., Viswanathan, R.: Chapter 1 - graph theory for systems biology: interval graphs, motifs, and pattern recognition. In: Robeva, R.S. (ed.) Algebraic and Discrete Mathematical Methods for Modern Biology, pp. 1–27. Academic Press, Boston (2015). https://doi.org/10.1016/B978-0-12-801213-0.00001-0

  18. Kaufmann, M., Kratochvíl, J., Lehmann, K.A., Subramanian, A.R.: Max-tolerance graphs as intersection graphs: cliques, cycles, and recognition. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, 22–26 January 2006, pp. 832–841. ACM Press (2006). http://dl.acm.org/citation.cfm?id=1109557.1109649

  19. Kisfaludi-Bak, S., Okrasa, K., Rzążewski, P.: Computing list homomorphisms in geometric intersection graphs. CoRR abs/2202.08896 (2022). https://arxiv.org/abs/2202.08896

  20. Kisfaludi-Bak, S., van der Zanden, T.C.: On the exact complexity of Hamiltonian cycle and q-colouring in disk graphs. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 369–380. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_31

    Chapter  MATH  Google Scholar 

  21. Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. J. Comb. Theory Ser. B 62(2), 289–315 (1994). https://doi.org/10.1006/jctb.1994.1071

    Article  MathSciNet  MATH  Google Scholar 

  22. Kratochvíl, J.: String graphs. I. The number of critical nonstring graphs is infinite. J. Comb. Theory Ser. B 52(1), 53–66 (1991). https://doi.org/10.1016/0095-8956(91)90090-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Kratochvíl, J.: String graphs. II. Recognizing string graphs is NP-hard. J. Comb. Theory Ser. B 52(1), 67–78 (1991). https://doi.org/10.1016/0095-8956(91)90091-W

    Article  MathSciNet  MATH  Google Scholar 

  24. Lekkeikerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line. Fundam. Math. 51(1), 45–64 (1962). http://eudml.org/doc/213681

  25. Marx, D.: Efficient approximation schemes for geometric problems? In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 448–459. Springer, Heidelberg (2005). https://doi.org/10.1007/11561071_41

    Chapter  Google Scholar 

  26. Marx, D.: On the optimality of planar and geometric approximation schemes. In: FOCS 2007 Proceedings, pp. 338–348 (2007). https://doi.org/10.1109/FOCS.2007.50

  27. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_72

    Chapter  MATH  Google Scholar 

  28. Miller, G.L., Teng, S., Thurston, W.P., Vavasis, S.A.: Separators for sphere-packings and nearest neighbor graphs. J. ACM 44(1), 1–29 (1997). https://doi.org/10.1145/256292.256294

    Article  MathSciNet  MATH  Google Scholar 

  29. Okrasa, K., Rzążewski, P.: Subexponential algorithms for variants of the homomorphism problem in string graphs. J. Comput. Syst. Sci. 109, 126–144 (2020). https://doi.org/10.1016/j.jcss.2019.12.004

    Article  MathSciNet  MATH  Google Scholar 

  30. Smith, W.D., Wormald, N.C.: Geometric separator theorems and applications. In: FOCS 1998 Proceedings, pp. 232–243. IEEE Computer Society, Washington, DC, USA (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina Okrasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kisfaludi-Bak, S., Okrasa, K., Rzążewski, P. (2022). Computing List Homomorphisms in Geometric Intersection Graphs. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15914-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15913-8

  • Online ISBN: 978-3-031-15914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics